Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_6_a6, author = {M. E. Lipatov}, title = {Classification of {Cocycles} over {Ergodic} {Automorphisms} with {Values} in the {Lorentz} {Group} and {Recurrence} of {Cocycles}}, journal = {Matemati\v{c}eskie zametki}, pages = {869--877}, publisher = {mathdoc}, volume = {93}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a6/} }
TY - JOUR AU - M. E. Lipatov TI - Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles JO - Matematičeskie zametki PY - 2013 SP - 869 EP - 877 VL - 93 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a6/ LA - ru ID - MZM_2013_93_6_a6 ER -
M. E. Lipatov. Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 869-877. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a6/
[1] R. J. Zimmer, “Induced and amenable ergodic actions of Lie groups”, Ann. Sci. École Norm. Sup. (4), 11:3 (1978), 407–428 | MR | Zbl
[2] C. C. Moore, “Amenable subgroups of semi-simple groups and proximal flows”, Israel J. Math., 34:1-2 (1979), 121–138 | DOI | MR | Zbl
[3] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monogr. Math., 81, Birkhäuser Verlag, Basel, 1984 | MR | Zbl
[4] V. I. Oseledets, “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Tr. MMO, 19, Izd-vo Mosk. un-ta, M., 1968, 179–210 | MR | Zbl
[5] L. Arnold, D. C. Nguyen, V. Oseledets, “Jordan normal form for linear cocycles”, Random Oper. Stochastic Equations, 7:4 (1999), 303–358 | MR | Zbl
[6] V. I. Oseledets, Classification of $\mathrm{GL}(2,R)$-Valued Cocycles of Dynamical Systems, Report 360, Institut für Dynamische Systeme, Universität Bremen, Bremen, 1995
[7] Ph. Thieullen, “Ergodic reduction of random products of two-by-two matrices”, J. Anal. Math., 73:1 (1997), 19–64 | DOI | MR | Zbl
[8] K. Schmidt, “Cocycles of Ergodic Transformation Groups”, Macmillan Lectures in Math., 1, Macmillan Company of India, Delhi, 1977 | MR | Zbl
[9] G. Ochs, V. I. Oseledets, On Recurrent Cocycles and the Non-Existence of Random Fixed Points, Report 382, Institut für Dynamische Systeme, Universität Bremen, Bremen, 1996
[10] M. E. Lipatov, “Rekurrentnost matrichnykh kotsiklov”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2010, no. 5, 61–64 | MR
[11] G. Greschonig, “Recurrence in unipotent groups and ergodic nonabelian group extensions”, Israel J. Math., 147:1 (2005), 245–267 | DOI | MR | Zbl
[12] L. V. Ahlfors, Möbius Transformations in Several Dimensions, Ordway Professorship Lectures Math., Univ. of Minnesota, Minneapolis, MN, 1981 | MR | Zbl
[13] A. Douady, C. J. Earle, “Conformally natural extension of homeomorphisms of the circle”, Acta Math., 157:1 (1986), 23–48 | DOI | MR | Zbl
[14] L. Arnold, Random Dynamical Systems, Springer Monogr. Math., Springer-Verlag, Berlin, 1998 | MR | Zbl
[15] G. Atkinson, “Recurrence of co-cycles and random walks”, J. London Math. Soc. (2), 13:3 (1976), 486–488 | DOI | MR | Zbl