Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 869-877
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that any $\mathrm{SO}_0(1,d)$-valued cocycle over an ergodic (probability) measure-preserving automorphism is cohomologous to a cocycle having one of three special forms; the recurrence property of such cocycles is also studied.
Keywords:
cocycle, ergodic automorphism, recurrence of cocycles, cohomology
Mots-clés : Lorentz group $\mathrm{SO}_0(1,d)$, conformal barycenter.
Mots-clés : Lorentz group $\mathrm{SO}_0(1,d)$, conformal barycenter.
@article{MZM_2013_93_6_a6,
author = {M. E. Lipatov},
title = {Classification of {Cocycles} over {Ergodic} {Automorphisms} with {Values} in the {Lorentz} {Group} and {Recurrence} of {Cocycles}},
journal = {Matemati\v{c}eskie zametki},
pages = {869--877},
publisher = {mathdoc},
volume = {93},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a6/}
}
TY - JOUR AU - M. E. Lipatov TI - Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles JO - Matematičeskie zametki PY - 2013 SP - 869 EP - 877 VL - 93 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a6/ LA - ru ID - MZM_2013_93_6_a6 ER -
M. E. Lipatov. Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 869-877. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a6/