Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 869-877.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any $\mathrm{SO}_0(1,d)$-valued cocycle over an ergodic (probability) measure-preserving automorphism is cohomologous to a cocycle having one of three special forms; the recurrence property of such cocycles is also studied.
Keywords: cocycle, ergodic automorphism, recurrence of cocycles, cohomology
Mots-clés : Lorentz group $\mathrm{SO}_0(1,d)$, conformal barycenter.
@article{MZM_2013_93_6_a6,
     author = {M. E. Lipatov},
     title = {Classification of {Cocycles} over {Ergodic} {Automorphisms} with {Values} in the {Lorentz} {Group} and {Recurrence} of {Cocycles}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {869--877},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a6/}
}
TY  - JOUR
AU  - M. E. Lipatov
TI  - Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles
JO  - Matematičeskie zametki
PY  - 2013
SP  - 869
EP  - 877
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a6/
LA  - ru
ID  - MZM_2013_93_6_a6
ER  - 
%0 Journal Article
%A M. E. Lipatov
%T Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles
%J Matematičeskie zametki
%D 2013
%P 869-877
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a6/
%G ru
%F MZM_2013_93_6_a6
M. E. Lipatov. Classification of Cocycles over Ergodic Automorphisms with Values in the Lorentz Group and Recurrence of Cocycles. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 869-877. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a6/

[1] R. J. Zimmer, “Induced and amenable ergodic actions of Lie groups”, Ann. Sci. École Norm. Sup. (4), 11:3 (1978), 407–428 | MR | Zbl

[2] C. C. Moore, “Amenable subgroups of semi-simple groups and proximal flows”, Israel J. Math., 34:1-2 (1979), 121–138 | DOI | MR | Zbl

[3] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monogr. Math., 81, Birkhäuser Verlag, Basel, 1984 | MR | Zbl

[4] V. I. Oseledets, “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Tr. MMO, 19, Izd-vo Mosk. un-ta, M., 1968, 179–210 | MR | Zbl

[5] L. Arnold, D. C. Nguyen, V. Oseledets, “Jordan normal form for linear cocycles”, Random Oper. Stochastic Equations, 7:4 (1999), 303–358 | MR | Zbl

[6] V. I. Oseledets, Classification of $\mathrm{GL}(2,R)$-Valued Cocycles of Dynamical Systems, Report 360, Institut für Dynamische Systeme, Universität Bremen, Bremen, 1995

[7] Ph. Thieullen, “Ergodic reduction of random products of two-by-two matrices”, J. Anal. Math., 73:1 (1997), 19–64 | DOI | MR | Zbl

[8] K. Schmidt, “Cocycles of Ergodic Transformation Groups”, Macmillan Lectures in Math., 1, Macmillan Company of India, Delhi, 1977 | MR | Zbl

[9] G. Ochs, V. I. Oseledets, On Recurrent Cocycles and the Non-Existence of Random Fixed Points, Report 382, Institut für Dynamische Systeme, Universität Bremen, Bremen, 1996

[10] M. E. Lipatov, “Rekurrentnost matrichnykh kotsiklov”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2010, no. 5, 61–64 | MR

[11] G. Greschonig, “Recurrence in unipotent groups and ergodic nonabelian group extensions”, Israel J. Math., 147:1 (2005), 245–267 | DOI | MR | Zbl

[12] L. V. Ahlfors, Möbius Transformations in Several Dimensions, Ordway Professorship Lectures Math., Univ. of Minnesota, Minneapolis, MN, 1981 | MR | Zbl

[13] A. Douady, C. J. Earle, “Conformally natural extension of homeomorphisms of the circle”, Acta Math., 157:1 (1986), 23–48 | DOI | MR | Zbl

[14] L. Arnold, Random Dynamical Systems, Springer Monogr. Math., Springer-Verlag, Berlin, 1998 | MR | Zbl

[15] G. Atkinson, “Recurrence of co-cycles and random walks”, J. London Math. Soc. (2), 13:3 (1976), 486–488 | DOI | MR | Zbl