Note on the Holonomy Groups of Pseudo-Riemannian Manifolds
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 821-827.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary subalgebra $\mathfrak{h}\subset\mathfrak{so}(r,s)$ a polynomial pseudo-Riemannian metric of signature $(r+2,s+2)$ is constructed, the holonomy algebra of this metric contains $\mathfrak{h}$ as a subalgebra. This result shows the essential distinction between the holonomy algebras of pseudo-Riemannian manifolds of index greater than or equal to $2$ and the holonomy algebras of Riemannian and Lorentzian manifolds.
Keywords: holonomy algebra, pseudo-Riemannian manifolds, linear connection, Levi-Cività connection, curvature tensor, Lorentzian manifold.
@article{MZM_2013_93_6_a2,
     author = {A. S. Galaev},
     title = {Note on the {Holonomy} {Groups} of {Pseudo-Riemannian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {821--827},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a2/}
}
TY  - JOUR
AU  - A. S. Galaev
TI  - Note on the Holonomy Groups of Pseudo-Riemannian Manifolds
JO  - Matematičeskie zametki
PY  - 2013
SP  - 821
EP  - 827
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a2/
LA  - ru
ID  - MZM_2013_93_6_a2
ER  - 
%0 Journal Article
%A A. S. Galaev
%T Note on the Holonomy Groups of Pseudo-Riemannian Manifolds
%J Matematičeskie zametki
%D 2013
%P 821-827
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a2/
%G ru
%F MZM_2013_93_6_a2
A. S. Galaev. Note on the Holonomy Groups of Pseudo-Riemannian Manifolds. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 821-827. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a2/

[1] J. Hano, H. Ozeki, “On the holonomy group of linear connections”, Nagoya Math. J., 10 (1956), 97–100 | MR | Zbl

[2] M. Berger, “Sur les groupes d'holonomie homogénes des variétés à connexion affine et des variétés riemanniennes”, Bull. Soc. Math. France, 83 (1955), 279–330 | MR | Zbl

[3] S. Merkulov, L. Schwachhöfer, “Classification of irreducible holonomies of torsion-free affine connections”, Ann. of Math. (2), 150:1 (1999), 77–149 | DOI | MR | Zbl

[4] D. V. Alekseevskii, “Rimanovy prostranstva s neobychnymi gruppami golonomii”, Funkts. analiz i ego pril., 2:2 (1968), 1–10 | MR | Zbl

[5] A. Besse, Mnogoobraziya Enshteina, T. 2, Mir, M., 1990 | MR | Zbl

[6] D. Joyce, Riemannian Holonomy Groups and Calibrated Geometry, Oxf. Grad. Texts Math., 12, Oxford Univ. Press, Oxford, 2007 | MR | Zbl

[7] D. V. Egorov, “QR-podmnogoobraziya i rimanovy metriki s gruppoi golonomii $G_2$”, Matem. zametki, 90:5 (2011), 781–784 | DOI | MR

[8] A. Galaev, T. Leistner, “Holonomy groups of Lorentzian manifolds: classification, examples, and applications”, Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., European Math. Soc., Zürich, 2008, 53–96 | MR | Zbl

[9] T. Leistner, “On the classification of Lorentzian holonomy groups”, J. Differential Geom., 76:3 (2007), 423–484 | MR | Zbl

[10] A. Galaev, T. Leistner, “Recent developments in pseudo-Riemannian holonomy theory”, Handbook of Pseudo-Riemannian Geometry and Supersymmetry, IRMA Lect. Math. Theor. Phys., 16, European Math. Soc., Zürich, 2010, 581–627 | MR | Zbl

[11] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR | Zbl