Note on the Holonomy Groups of Pseudo-Riemannian Manifolds
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 821-827

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary subalgebra $\mathfrak{h}\subset\mathfrak{so}(r,s)$ a polynomial pseudo-Riemannian metric of signature $(r+2,s+2)$ is constructed, the holonomy algebra of this metric contains $\mathfrak{h}$ as a subalgebra. This result shows the essential distinction between the holonomy algebras of pseudo-Riemannian manifolds of index greater than or equal to $2$ and the holonomy algebras of Riemannian and Lorentzian manifolds.
Keywords: holonomy algebra, pseudo-Riemannian manifolds, linear connection, Levi-Cività connection, curvature tensor, Lorentzian manifold.
@article{MZM_2013_93_6_a2,
     author = {A. S. Galaev},
     title = {Note on the {Holonomy} {Groups} of {Pseudo-Riemannian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {821--827},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a2/}
}
TY  - JOUR
AU  - A. S. Galaev
TI  - Note on the Holonomy Groups of Pseudo-Riemannian Manifolds
JO  - Matematičeskie zametki
PY  - 2013
SP  - 821
EP  - 827
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a2/
LA  - ru
ID  - MZM_2013_93_6_a2
ER  - 
%0 Journal Article
%A A. S. Galaev
%T Note on the Holonomy Groups of Pseudo-Riemannian Manifolds
%J Matematičeskie zametki
%D 2013
%P 821-827
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a2/
%G ru
%F MZM_2013_93_6_a2
A. S. Galaev. Note on the Holonomy Groups of Pseudo-Riemannian Manifolds. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 821-827. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a2/