Note on the Holonomy Groups of Pseudo-Riemannian Manifolds
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 821-827
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arbitrary subalgebra $\mathfrak{h}\subset\mathfrak{so}(r,s)$ a polynomial pseudo-Riemannian metric of signature $(r+2,s+2)$ is constructed, the holonomy algebra of this metric contains $\mathfrak{h}$ as a subalgebra. This result shows the essential distinction between the holonomy algebras of pseudo-Riemannian manifolds of index greater than or equal to $2$ and the holonomy algebras of Riemannian and Lorentzian manifolds.
Keywords:
holonomy algebra, pseudo-Riemannian manifolds, linear connection, Levi-Cività connection, curvature tensor, Lorentzian manifold.
@article{MZM_2013_93_6_a2,
author = {A. S. Galaev},
title = {Note on the {Holonomy} {Groups} of {Pseudo-Riemannian} {Manifolds}},
journal = {Matemati\v{c}eskie zametki},
pages = {821--827},
publisher = {mathdoc},
volume = {93},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a2/}
}
A. S. Galaev. Note on the Holonomy Groups of Pseudo-Riemannian Manifolds. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 821-827. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a2/