The Mahler Problem with Nonmonotone Right-Hand Side in the Field of Complex Numbers
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 812-820.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the last twenty years, the exact order of approximation by zeros of the moduli of the values of the integer polynomials in a real and a complex variable was established. However, in the case of convergence of the series consisting of the right-hand sides of inequalities, the monotonicity condition for the right-hand sides in the classical Khintchine theorem can be dropped. It is shown in the present paper that, in the complex case, the monotonicity condition is also insignificant for polynomials of arbitrary degree.
Keywords: Mahler problem, classical Khintchine theorem, field of complex numbers, Baker's conjecture
Mots-clés : integer polynomial, Lebesgue measure.
@article{MZM_2013_93_6_a1,
     author = {N. V. Budarina},
     title = {The {Mahler} {Problem} with {Nonmonotone} {Right-Hand} {Side} in the {Field} of {Complex} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {812--820},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a1/}
}
TY  - JOUR
AU  - N. V. Budarina
TI  - The Mahler Problem with Nonmonotone Right-Hand Side in the Field of Complex Numbers
JO  - Matematičeskie zametki
PY  - 2013
SP  - 812
EP  - 820
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a1/
LA  - ru
ID  - MZM_2013_93_6_a1
ER  - 
%0 Journal Article
%A N. V. Budarina
%T The Mahler Problem with Nonmonotone Right-Hand Side in the Field of Complex Numbers
%J Matematičeskie zametki
%D 2013
%P 812-820
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a1/
%G ru
%F MZM_2013_93_6_a1
N. V. Budarina. The Mahler Problem with Nonmonotone Right-Hand Side in the Field of Complex Numbers. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 812-820. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a1/

[1] K. Mahler, “Über das Maß der Menge aller $S$-Zahlen”, Math. Ann., 106:1 (1932), 131–139 | DOI | MR | Zbl

[2] V. G. Sprindzhuk, “O gipoteze Malera”, DAN SSSR, 154:4 (1964), 783–786 | MR | Zbl

[3] V. G. Sprindzhuk, Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967 | MR | Zbl

[4] V. I. Bernik, D. V. Vasilev, “Teorema Khinchina dlya tselochislennykh polinomov kompleksnoi peremennoi”, Tr. in-ta matem. NAN Belarusi, 3, In-t matem. NAN Belarusi, Minsk, 1999, 10–20 | MR | Zbl

[5] A. I. Khintchine, “Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92:1-2 (1924), 115–125 | DOI | MR | Zbl

[6] V. V. Beresnevich, “On a theorem of V. Bernik in the metric theory of Diophantine approximation”, Acta Arith., 117:1 (2005), 71–80 | DOI | MR | Zbl

[7] V. I. Bernik, D. Kleinbock, G. A. Margulis, “Khintchine-type theorems on manifolds: the convergence case for standart and multiplicative versions”, Int. Math. Res. Notices, 9 (2001), 453–486 | DOI | MR | Zbl

[8] V. I. Bernik, “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 | MR | Zbl