On The Bondage Number of Middle Graphs
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 803-811.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G = (V(G), E(G))$ be a simple graph. A subset $S$ of $V(G)$ is a dominating set of $G$ if, for any vertex $v \in {V(G)-S}$, there exists some vertex $u \in S$ such that $uv \in E(G)$. The domination number, denoted by $\gamma(G)$, is the cardinality of a minimal dominating set of $G$. There are several types of domination parameters depending upon the nature of domination and the nature of dominating set. These parameters are bondage, reinforcement, strong-weak domination, strong-weak bondage numbers. In this paper, we first investigate the strong-weak domination number of middle graphs of a graph. Then several results for the bondage, strong-weak bondage number of middle graphs are obtained.
Keywords: connectivity, network design and communication, strong and weak domination number, bondage number, strong and weak bondage number, middle graphs.
@article{MZM_2013_93_6_a0,
     author = {A. Ayta\c{c} and T. Turaci and Z. N. Odabas},
     title = {On {The} {Bondage} {Number} of {Middle} {Graphs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--811},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a0/}
}
TY  - JOUR
AU  - A. Aytaç
AU  - T. Turaci
AU  - Z. N. Odabas
TI  - On The Bondage Number of Middle Graphs
JO  - Matematičeskie zametki
PY  - 2013
SP  - 803
EP  - 811
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a0/
LA  - ru
ID  - MZM_2013_93_6_a0
ER  - 
%0 Journal Article
%A A. Aytaç
%A T. Turaci
%A Z. N. Odabas
%T On The Bondage Number of Middle Graphs
%J Matematičeskie zametki
%D 2013
%P 803-811
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a0/
%G ru
%F MZM_2013_93_6_a0
A. Aytaç; T. Turaci; Z. N. Odabas. On The Bondage Number of Middle Graphs. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 803-811. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a0/

[1] E. Sampathkumar, L. Pushpa Latha, “Strong weak domination and domination balance in a graph”, Discrete Math., 161:1-3 (1996), 235–242 | DOI | MR | Zbl

[2] D. Bauer, F. Harary, J. Nieminen, C. L. Suffel, “Domination alteration sets in graph”, Discrete Math., 47:2-3 (1983), 153–161 | DOI | MR | Zbl

[3] J. F. Fink, M. S. Jacobson, L. F. Kinch, J. Roberts, “The bondage number of a graph”, Discrete Math., 86:1-3 (1990), 47–57 | DOI | MR | Zbl

[4] D. F. Hartnell, D. F. Rall, “Bounds on the bondage number of a graph”, Discrete Math., 128:1-3 (1994), 173–177 | DOI | MR | Zbl

[5] J. Ghoshal, R. Laskar, D. Pillone, C. Wallis, “Strong bondage and strong reinforcement numbers of graphs”, Congr. Numer., 108 (1995), 33–42 | MR | Zbl

[6] K. Ebadi, L. Pushpalatha, “Smarandachely bondage number of a graph”, Int. J. Math. Comb., 4 (2010), 09–19 | MR | Zbl

[7] M. Nihei, “Algebraic connectivity of the line graph, the middle graph and the total graph of a regular graph”, Ars Combin., 69 (2003), 215–221 | MR | Zbl

[8] A. Mamut, E. Vumar, “A note on the integrity of middle graphs”, Discrete Geometry, Combinatorics and Graph Theory, Lecture Notes in Comput. Sci., 4381, Springer-Verlag, Berlin, 2007, 130–134 | DOI | MR | Zbl