Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_5_a8, author = {M. S. Lobanov}, title = {On a {Method} of {Derivation} of {Lower} {Bounds} for the {Nonlinearity} of {Boolean} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {741--745}, publisher = {mathdoc}, volume = {93}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a8/} }
M. S. Lobanov. On a Method of Derivation of Lower Bounds for the Nonlinearity of Boolean Functions. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 741-745. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a8/
[1] N. T. Courtois, W. Meier, “Algebraic attacks on stream ciphers with linear feedback”, Advances in cryptology – EUROCRYPT 2003, Lecture Notes in Comput. Sci., 2656, Springer-Verlag, Heidelberg, 2003, 345–359 | DOI | MR | Zbl
[2] W. Meier, E. Pasalic, C. Carlet, “Algebraic attacks and decomposition of Boolean functions”, Advances in Cryptology – EUROCRYPT 2004, Lecture Notes in Comput. Sci., 3027, Springer-Verlag, Heidelberg, 2004, 474–491 | DOI | MR | Zbl
[3] M. S. Lobanov, “Tochnoe sootnoshenie mezhdu nelineinostyu i algebraicheskoi immunnostyu”, Diskret. matem., 18:3 (2006), 152–159 | DOI | MR | Zbl
[4] M. S. Lobanov, “Tochnye sootnosheniya mezhdu nelineinostyu i algebraicheskoi immunnostyu”, Diskretn. analiz i issled. oper., 15:6 (2008), 34–47 | MR
[5] S. Mesnager, “Improving the lower bound on the higher order nonlinearity of Boolean functions with prescribed algebraic immunity”, IEEE Trans. Inform. Theory, 54:8 (2008), 3656–3662 | MR | Zbl
[6] P. Rizomiliotis, “Improving the high order nonlinearity lower bound for Boolean functions with given algebraic immunity”, Discrete Appl. Math., 158:18 (2010), 2049–2055 | DOI | MR | Zbl