On Replacements Reducing One-Dimensional Systems of Shallow-Water Equations to the Wave Equation with Sound Speed $c^2=x$
Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 716-727.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain point transformations for three one-dimensional systems: shallow-water equations on a flat and a sloping bottom and the system of linear equations obtained by formal linearization of shallow-water equations on a sloping bottom. The passage of these systems to the Carrier–Greenspan parametrization is also obtained. For linear shallow-water equations on a sloping bottom, we obtain the solution in the form of a traveling wave with variable velocity. We establish the relationship between the resulting solution and the solution of the two-dimensional wave equation.
Keywords: shallow-water equations on a flat and a sloping bottom, two-dimensional wave equation, self-similar solution, traveling-wave solution, Carrier–Greenspan parametrization
Mots-clés : point transformation, hodograph transformation, Jacobian.
@article{MZM_2013_93_5_a5,
     author = {S. Yu. Dobrokhotov and S. B. Medvedev and D. S. Minenkov},
     title = {On {Replacements} {Reducing} {One-Dimensional} {Systems} of {Shallow-Water} {Equations} to the {Wave} {Equation} with {Sound} {Speed} $c^2=x$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {716--727},
     publisher = {mathdoc},
     volume = {93},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a5/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - S. B. Medvedev
AU  - D. S. Minenkov
TI  - On Replacements Reducing One-Dimensional Systems of Shallow-Water Equations to the Wave Equation with Sound Speed $c^2=x$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 716
EP  - 727
VL  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a5/
LA  - ru
ID  - MZM_2013_93_5_a5
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A S. B. Medvedev
%A D. S. Minenkov
%T On Replacements Reducing One-Dimensional Systems of Shallow-Water Equations to the Wave Equation with Sound Speed $c^2=x$
%J Matematičeskie zametki
%D 2013
%P 716-727
%V 93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a5/
%G ru
%F MZM_2013_93_5_a5
S. Yu. Dobrokhotov; S. B. Medvedev; D. S. Minenkov. On Replacements Reducing One-Dimensional Systems of Shallow-Water Equations to the Wave Equation with Sound Speed $c^2=x$. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 716-727. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a5/

[1] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Wiley Classics Lib., John Wiley Sons, New York, 1992 | MR | Zbl

[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[3] R. Courant, Methods of Mathematical Physics. Vol. II. Partial Differential Equations, Interscience Publ., New York, 1962 | MR | Zbl

[4] G. F. Carrier, H. P. Greenspan, “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4:1 (1958), 97–109 | DOI | MR | Zbl

[5] S. Yu. Dobrokhotov, B. Tirotstsi, “Lokalizovannye resheniya odnomernoi nelineinoi sistemy uravnenii melkoi vody so skorostyu $c=\sqrt x$”, UMN, 65:1(391) (2010), 185–186 | DOI | MR | Zbl

[6] S. B. Medvedev, “Zakony sokhraneniya nulevogo poryadka dlya odnomernykh uravnenii gidrodinamiki s pravoi chastyu”, Vestn. Novosibirsk. gos. un-ta. Ser. Matem., mekh., inform., 10:1 (2010), 70–88 | Zbl

[7] I. Didenkulova, E. Pelinovsky, “Rogue waves in nonlinear hyperbolic systems (shallow-water framework)”, Nonlinearity, 24:3 (2011), R1–R18 | DOI | MR | Zbl

[8] M. M. Smirnov, Zadachi po uravneniyam matematicheskoi fiziki, Nauka, M., 1975 | MR

[9] M. M. Smirnov, Uravneniya smeshannogo tipa, Nauka, M., 1970 | MR | Zbl

[10] I. L. Karol, “K teorii kraevykh zadach dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa”, Matem. sb., 38(80):3 (1956), 261–282 | MR | Zbl

[11] S. K. Zhdanov, B. A. Trubnikov, Kvazigazovye neustoichivye sredy, Nauka, M., 1991

[12] B. A. Trubnikov, Teoriya plazmy, Energoatomizdat, M., 1996

[13] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001 | Zbl

[14] G. I. Barenblatt, Podobie, avtomodelnost, promezhutochnaya asimptotika. Teoriya i prilozheniya k geofizicheskoi gidrodinamike, Gidrometeoizdat, L., 1982 | MR

[15] S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zenkovich, “Odin klass tochnykh algebraicheskikh lokalizovannykh reshenii mnogomernogo volnovogo uravneniya”, Matem. zametki, 88:6 (2010), 942–945 | DOI | MR | Zbl

[16] E. N. Pelinovsky, R. Kh. Mazova, “Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles”, Natural Hazards, 6:3 (1992), 227–249 | DOI

[17] T. Vukašinac, P. Zhevandrov, “Geometric asymptotics for a degenerate hyperbolic equation”, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR | Zbl

[18] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity: I”, Russ. J. Math. Phys., 17:4 (2010), 434–447 | DOI | MR | Zbl

[19] D. S. Minenkov, “Asimptotiki reshenii odnomernoi nelineinoi sistemy uravnenii melkoi vody s vyrozhdayuscheisya skorostyu”, Matem. zametki, 92:5 (2012), 721–730 | DOI

[20] L. V. Ovsyannikov, Lektsii po osnovam gazovoi dinamiki, Nauka, M., 1981 | MR | Zbl