Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows
Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 665-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

As an example of two coupled waveguides, we construct a periodic second-order differential operator acting in a Euclidean domain and having spectral gaps whose edges are attained strictly inside the Brillouin zone. The waveguides are modeled by the Laplacian in two infinite strips of different width that have a common interior boundary. On this common boundary, we impose the Neumann boundary condition, but cut out a periodic system of small holes, while on the remaining exterior boundary we impose the Dirichlet boundary condition. It is shown that, by varying the widths of the strips and the distance between the holes, one can control the location of the extrema of the band functions as well as the number of the open gaps. We calculate the leading terms in the asymptotics for the gap lengths and the location of the extrema.
Keywords: Laplacian, periodic operator, waveguide, band spectrum, spectral gap, dispersion laws, matching of asymptotic expansions, boundary conditions.
@article{MZM_2013_93_5_a2,
     author = {D. I. Borisov and K. V. Pankrashin},
     title = {Gap {Opening} and {Split} {Band} {Edges} in {Waveguides} {Coupled} by a {Periodic} {System} of {Small} {Windows}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {665--683},
     publisher = {mathdoc},
     volume = {93},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a2/}
}
TY  - JOUR
AU  - D. I. Borisov
AU  - K. V. Pankrashin
TI  - Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows
JO  - Matematičeskie zametki
PY  - 2013
SP  - 665
EP  - 683
VL  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a2/
LA  - ru
ID  - MZM_2013_93_5_a2
ER  - 
%0 Journal Article
%A D. I. Borisov
%A K. V. Pankrashin
%T Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows
%J Matematičeskie zametki
%D 2013
%P 665-683
%V 93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a2/
%G ru
%F MZM_2013_93_5_a2
D. I. Borisov; K. V. Pankrashin. Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 665-683. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a2/

[1] P. Kuchment, “The mathematics of photonic crystals”, Mathematical Modeling in Optical Science, Frontiers Appl. Math., 22, SIAM, Philadelphia, PA, 2001, 207–272 | MR | Zbl

[2] P. Exner, P. Kuchment, B. Winn, “On the location of spectral edges in $\mathbb Z$-periodic media”, J. Phys. A. Math. Theor., 43:47 (2010), 474022 | DOI | MR | Zbl

[3] J. M. Harrison, P. Kuchment, A. Sobolev, B. Winn, “On occurrence of spectral edges for periodic operators inside the Brillouin zone”, J. Phys. A. Math. Theor., 40:27 (2007), 7597–7618 | DOI | MR | Zbl

[4] A. Figotin, I. Vitebskiy, “Slow-wave resonance in periodic stacks of anisotropic layers”, Phys. Rev. A, 76:5 (2007), 053839 | DOI

[5] S. Mahmoodian, A. A. Sukhorukov, S. Ha, A. V. Lavrinenko, C. G. Poulton, K. B. Dossou, L. C. Botten, R. C. McPhedran, C. M. de Sterke, “Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges”, Optics Express, 18:25 (2010), 25693–25701 | DOI

[6] G. Mumcu, K. Sertel, J. L. Volakis, I. Vitebskiy, A. Figotin, “RF propagation in finite thickness unidirectional magnetic photonic crystals”, IEEE Trans. Antennas Propagation, 53:12 (2005), 4026–4034 | DOI

[7] R. Hempel, O. Post, “Spectral gaps for periodic elliptic operators with high contrast: an overview”, Progress in Analysis, Vol. I (Berlin 2001), World Sci. Publ., River Edge, NJ, 2003, 577–587 | MR | Zbl

[8] K. Yoshitomi, “Band gap of the spectrum in periodically curves quantum waveguides”, J. Differential Equations, 142:1 (1998), 123–166 | DOI | MR | Zbl

[9] L. Friedlander, M. Solomyak, “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Phys., 15:2 (2008), 238–242 | DOI | MR | Zbl

[10] S. A. Nazarov, “Lakuna v suschestvennom spektre zadachi Neimana dlya ellipticheskoi sistemy na periodicheskoi oblasti”, Funkts. analiz i ego pril., 43:3 (2009), 92–95 | DOI | MR

[11] S. A. Nazarov, “Primer mnozhestvennosti lakun v spektre periodicheskogo volnovoda”, Matem. sb., 201:4 (2010), 99–124 | DOI | MR | Zbl

[12] K. Pankrashkin, “On the spectrum of a waveguide with periodic cracks”, J. Phys. A. Math. Theor., 43:47 (2010), 474030 | DOI | MR | Zbl

[13] K. Yoshitomi, “Band spectrum of the Laplacian on a slab with the Dirichlet boundary condition on a grid”, Kyushu J. Math., 57:1 (2003), 87–116 | DOI | MR | Zbl

[14] F. L. Bakharev, S. A. Nazarov, K. M. Ruotsalainen, A Gap in the spectrum of the Neumann–Laplacian on a Periodic Waveguide, math.SP/1110.5990

[15] G. Cardone, S. A. Nazarov, C. Perugia, “A gap in the essential spectrum of a cylindrical waveguide with a periodic perturbation of the surface”, Math. Nachr., 283:9 (2010), 1222–1244 | DOI | MR | Zbl

[16] S. A. Nazarov, “Otkrytie lakuny v nepreryvnom spektre periodicheski vozmuschennogo volnovoda”, Matem. zametki, 87:5 (2010), 764–786 | DOI | MR

[17] O. P. Melnichuk, I. Yu. Popov, “Kvantovye volnovody, svyazannye cherez periodicheskuyu sistemu malykh otverstii: otsenka zapreschennoi zony”, Pisma v ZhTF, 28:8 (2002), 69–73

[18] I. Yu. Popov, A. I. Trifanov, E. S. Trifanova, “Svyazannye dielektricheskie volnovody so svoistvami fotonnogo kristalla”, Zh. vychisl. matem. i matem. fiz., 50:11 (2010), 1931–1937 | MR | Zbl

[19] I. Yu. Popov, “Asymptotics of bound states and bands for laterally coupled waveguides and layers”, J. Math. Phys., 43:1 (2002), 215–234 | DOI | MR | Zbl

[20] V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. I, Birkhäuser Verlag, Basel, 2000 | MR | Zbl

[21] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR | Zbl

[22] R. R. Gadylshin, “Rasscheplenie kratnogo sobstvennogo znacheniya zadachi Dirikhle dlya operatora Laplasa pri singulyarnom vozmuschenii granichnogo usloviya”, Matem. zametki, 52:4 (1992), 42–55 | MR | Zbl

[23] L. Hillairet, C. Judge, “The eigenvalues of the Laplacian on domains with small slits”, Trans. Amer. Math. Soc., 362:12 (2010), 6231–6259 | DOI | MR | Zbl

[24] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol. 4. Analysis of Operators, Academic Press, New York, 1978 | MR | Zbl

[25] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl

[26] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl