Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_5_a2, author = {D. I. Borisov and K. V. Pankrashin}, title = {Gap {Opening} and {Split} {Band} {Edges} in {Waveguides} {Coupled} by a {Periodic} {System} of {Small} {Windows}}, journal = {Matemati\v{c}eskie zametki}, pages = {665--683}, publisher = {mathdoc}, volume = {93}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a2/} }
TY - JOUR AU - D. I. Borisov AU - K. V. Pankrashin TI - Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows JO - Matematičeskie zametki PY - 2013 SP - 665 EP - 683 VL - 93 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a2/ LA - ru ID - MZM_2013_93_5_a2 ER -
D. I. Borisov; K. V. Pankrashin. Gap Opening and Split Band Edges in Waveguides Coupled by a Periodic System of Small Windows. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 665-683. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a2/
[1] P. Kuchment, “The mathematics of photonic crystals”, Mathematical Modeling in Optical Science, Frontiers Appl. Math., 22, SIAM, Philadelphia, PA, 2001, 207–272 | MR | Zbl
[2] P. Exner, P. Kuchment, B. Winn, “On the location of spectral edges in $\mathbb Z$-periodic media”, J. Phys. A. Math. Theor., 43:47 (2010), 474022 | DOI | MR | Zbl
[3] J. M. Harrison, P. Kuchment, A. Sobolev, B. Winn, “On occurrence of spectral edges for periodic operators inside the Brillouin zone”, J. Phys. A. Math. Theor., 40:27 (2007), 7597–7618 | DOI | MR | Zbl
[4] A. Figotin, I. Vitebskiy, “Slow-wave resonance in periodic stacks of anisotropic layers”, Phys. Rev. A, 76:5 (2007), 053839 | DOI
[5] S. Mahmoodian, A. A. Sukhorukov, S. Ha, A. V. Lavrinenko, C. G. Poulton, K. B. Dossou, L. C. Botten, R. C. McPhedran, C. M. de Sterke, “Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges”, Optics Express, 18:25 (2010), 25693–25701 | DOI
[6] G. Mumcu, K. Sertel, J. L. Volakis, I. Vitebskiy, A. Figotin, “RF propagation in finite thickness unidirectional magnetic photonic crystals”, IEEE Trans. Antennas Propagation, 53:12 (2005), 4026–4034 | DOI
[7] R. Hempel, O. Post, “Spectral gaps for periodic elliptic operators with high contrast: an overview”, Progress in Analysis, Vol. I (Berlin 2001), World Sci. Publ., River Edge, NJ, 2003, 577–587 | MR | Zbl
[8] K. Yoshitomi, “Band gap of the spectrum in periodically curves quantum waveguides”, J. Differential Equations, 142:1 (1998), 123–166 | DOI | MR | Zbl
[9] L. Friedlander, M. Solomyak, “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Phys., 15:2 (2008), 238–242 | DOI | MR | Zbl
[10] S. A. Nazarov, “Lakuna v suschestvennom spektre zadachi Neimana dlya ellipticheskoi sistemy na periodicheskoi oblasti”, Funkts. analiz i ego pril., 43:3 (2009), 92–95 | DOI | MR
[11] S. A. Nazarov, “Primer mnozhestvennosti lakun v spektre periodicheskogo volnovoda”, Matem. sb., 201:4 (2010), 99–124 | DOI | MR | Zbl
[12] K. Pankrashkin, “On the spectrum of a waveguide with periodic cracks”, J. Phys. A. Math. Theor., 43:47 (2010), 474030 | DOI | MR | Zbl
[13] K. Yoshitomi, “Band spectrum of the Laplacian on a slab with the Dirichlet boundary condition on a grid”, Kyushu J. Math., 57:1 (2003), 87–116 | DOI | MR | Zbl
[14] F. L. Bakharev, S. A. Nazarov, K. M. Ruotsalainen, A Gap in the spectrum of the Neumann–Laplacian on a Periodic Waveguide, math.SP/1110.5990
[15] G. Cardone, S. A. Nazarov, C. Perugia, “A gap in the essential spectrum of a cylindrical waveguide with a periodic perturbation of the surface”, Math. Nachr., 283:9 (2010), 1222–1244 | DOI | MR | Zbl
[16] S. A. Nazarov, “Otkrytie lakuny v nepreryvnom spektre periodicheski vozmuschennogo volnovoda”, Matem. zametki, 87:5 (2010), 764–786 | DOI | MR
[17] O. P. Melnichuk, I. Yu. Popov, “Kvantovye volnovody, svyazannye cherez periodicheskuyu sistemu malykh otverstii: otsenka zapreschennoi zony”, Pisma v ZhTF, 28:8 (2002), 69–73
[18] I. Yu. Popov, A. I. Trifanov, E. S. Trifanova, “Svyazannye dielektricheskie volnovody so svoistvami fotonnogo kristalla”, Zh. vychisl. matem. i matem. fiz., 50:11 (2010), 1931–1937 | MR | Zbl
[19] I. Yu. Popov, “Asymptotics of bound states and bands for laterally coupled waveguides and layers”, J. Math. Phys., 43:1 (2002), 215–234 | DOI | MR | Zbl
[20] V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. I, Birkhäuser Verlag, Basel, 2000 | MR | Zbl
[21] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR | Zbl
[22] R. R. Gadylshin, “Rasscheplenie kratnogo sobstvennogo znacheniya zadachi Dirikhle dlya operatora Laplasa pri singulyarnom vozmuschenii granichnogo usloviya”, Matem. zametki, 52:4 (1992), 42–55 | MR | Zbl
[23] L. Hillairet, C. Judge, “The eigenvalues of the Laplacian on domains with small slits”, Trans. Amer. Math. Soc., 362:12 (2010), 6231–6259 | DOI | MR | Zbl
[24] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol. 4. Analysis of Operators, Academic Press, New York, 1978 | MR | Zbl
[25] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl
[26] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl