Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner
Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 658-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every continuous derivation on the $*$-algebra $S(\mathcal{M},\tau)$ of all $\tau$-measurable operators affiliated with a von Neumann algebra $\mathcal{M}$ is inner. For every properly infinite von Neumann algebra $\mathcal{M}$, any derivation on the $*$-algebra $S(\mathcal{M},\tau)$ is inner.
Keywords: von Neumann algebra, properly infinite, $\tau$-measurable operator, continuous derivation.
@article{MZM_2013_93_5_a1,
     author = {A. F. Ber},
     title = {Continuous {Derivations} on $*${-Algebras} of $\tau${-Measurable} {Operators} {Are} {Inner}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {658--664},
     publisher = {mathdoc},
     volume = {93},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a1/}
}
TY  - JOUR
AU  - A. F. Ber
TI  - Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner
JO  - Matematičeskie zametki
PY  - 2013
SP  - 658
EP  - 664
VL  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a1/
LA  - ru
ID  - MZM_2013_93_5_a1
ER  - 
%0 Journal Article
%A A. F. Ber
%T Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner
%J Matematičeskie zametki
%D 2013
%P 658-664
%V 93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a1/
%G ru
%F MZM_2013_93_5_a1
A. F. Ber. Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 658-664. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a1/

[1] S. Sakai, $C^{*}$-Algebras and $W^{*}$-Algebras, Ergeb. Math. Grenzgeb., 60, Springer-Verlag, New York, 1971 | MR | Zbl

[2] D. Olesen, “Derivations of $AW^*$-algebras are inner”, Pacific J. Math., 53:2 (1974), 555–561 | DOI | MR | Zbl

[3] A. F. Ber, V. I. Chilin, F. A. Sukochev, “Differentsirovaniya v kommutativnykh regulyarnykh algebrakh”, Matem. zametki, 75:3 (2004), 453–454 | DOI | MR | Zbl

[4] A. F. Ber, V. I. Chilin, F. A. Sukochev, “Non-trivial derivations on commutative regular algebras”, Extracta Math., 21:2 (2006), 107–147 | MR | Zbl

[5] A. G. Kusraev, “Avtomorfizmy i differentsirovaniya v rasshirennoi kompleksnoi $f$-algebre”, Sib. matem. zhurn., 47:1 (2006), 97–107 | MR | Zbl

[6] S. Albeverio, Sh. A. Ayupov, K. K. Kudaibergenov, “Structure of derivations on various algebras of measurable operators for type I von Neumann algebras”, J. Funct. Anal., 256:9 (2009), 2917–2943 | DOI | MR | Zbl

[7] A. F. Ber, B. de Pagter, F. A. Sukochev, “Derivations in algebras of operator-valued functions”, J. Operator Theory, 66:2 (2011), 261–300 | MR | Zbl

[8] A. F. Ber, “Nepreryvnost differentsirovanii na sobstvenno beskonechnykh $*$-algebrakh $\tau$-izmerimykh operatorov”, Matem. zametki, 90:5 (2011), 776–780 | DOI | MR

[9] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. II. Advanced Theory, Pure Appl. Math., 100, Academic Press, Orlando, FL, 1986 | MR | Zbl

[10] M. A. Muratov, V. I. Chilin, Algebry izmerimykh i lokalno izmerimykh operatorov, Pratsi In-tu matem. NAN Ukraïni, 69, In-t matem. NAN Ukraïni, Kiïv, 2007 | Zbl

[11] A. F. Ber, B. de Pagter, F. A. Sukochev, “Nekotorye zamechaniya o differentsirovaniyakh v algebrakh izmerimykh operatorov”, Matem. zametki, 87:4 (2010), 502–513 | DOI | MR | Zbl

[12] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Cahiers scientifiques, XXV, 2e ed. revue et augmentee, Gauthier–Villars, Paris, 1969 | MR | Zbl