Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner
Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 658-664

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every continuous derivation on the $*$-algebra $S(\mathcal{M},\tau)$ of all $\tau$-measurable operators affiliated with a von Neumann algebra $\mathcal{M}$ is inner. For every properly infinite von Neumann algebra $\mathcal{M}$, any derivation on the $*$-algebra $S(\mathcal{M},\tau)$ is inner.
Keywords: von Neumann algebra, properly infinite, $\tau$-measurable operator, continuous derivation.
@article{MZM_2013_93_5_a1,
     author = {A. F. Ber},
     title = {Continuous {Derivations} on $*${-Algebras} of $\tau${-Measurable} {Operators} {Are} {Inner}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {658--664},
     publisher = {mathdoc},
     volume = {93},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a1/}
}
TY  - JOUR
AU  - A. F. Ber
TI  - Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner
JO  - Matematičeskie zametki
PY  - 2013
SP  - 658
EP  - 664
VL  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a1/
LA  - ru
ID  - MZM_2013_93_5_a1
ER  - 
%0 Journal Article
%A A. F. Ber
%T Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner
%J Matematičeskie zametki
%D 2013
%P 658-664
%V 93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a1/
%G ru
%F MZM_2013_93_5_a1
A. F. Ber. Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 658-664. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a1/