Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner
Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 658-664
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that every continuous derivation on the $*$-algebra $S(\mathcal{M},\tau)$ of all $\tau$-measurable operators affiliated with a von Neumann algebra $\mathcal{M}$ is inner. For every properly infinite von Neumann algebra $\mathcal{M}$, any derivation on the $*$-algebra $S(\mathcal{M},\tau)$ is inner.
Keywords:
von Neumann algebra, properly infinite, $\tau$-measurable operator, continuous derivation.
@article{MZM_2013_93_5_a1,
author = {A. F. Ber},
title = {Continuous {Derivations} on $*${-Algebras} of $\tau${-Measurable} {Operators} {Are} {Inner}},
journal = {Matemati\v{c}eskie zametki},
pages = {658--664},
publisher = {mathdoc},
volume = {93},
number = {5},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a1/}
}
A. F. Ber. Continuous Derivations on $*$-Algebras of $\tau$-Measurable Operators Are Inner. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 658-664. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a1/