Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_4_a2, author = {I. Vodova}, title = {Chain {Rule} for {Conic} {Derivatives}}, journal = {Matemati\v{c}eskie zametki}, pages = {509--529}, publisher = {mathdoc}, volume = {93}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a2/} }
I. Vodova. Chain Rule for Conic Derivatives. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 509-529. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a2/
[1] V. I. Averbukh, O. G. Smolyanov, “Psevdotopologii i differentsirovanie”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1972, no. 2, 3–9 | MR | Zbl
[2] A. Frölicher, W. Bucher, Calculus in Vector Spaces without Norm, Lecture Notes in Math., 30, Springer-Verlag, Berlin, 1966 | DOI | MR | Zbl
[3] V. I. Averbukh, “O nepreryvnosti komponirovaniya”, Math. Nachr., 75 (1976), 153–183 | DOI | MR | Zbl
[4] V. I. Averbukh, O. G. Smolyanov, “Razlichnye opredeleniya proizvodnoi v lineinykh topologicheskikh prostranstvakh”, UMN, 23:4(142) (1968), 67–116 | MR | Zbl
[5] N. Bourbaki, Éléments de mathématique. Topologie générale. Chapitres 1 á 4, Springer-Verlag, Berlin, 2007 | MR | Zbl