Cotorsion Dimensions and Hopf Algebra Actions
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 614-623.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a finite-dimensional Hopf algebra over a field $k$, and let $A$ be an $H$-module algebra. In this paper, we discuss the cotorsion dimension of the smash product $A\mathbin{\#}H$. We prove that $$ \mathrm{l.cot.D}(A\mathbin{\#}H) \leq \mathrm{l.cot.D}(A) + \mathrm{r.D}(H), $$ which generalizes the result of group rings. Moreover, we give some sufficient conditions for which $$ \mathrm{l.cot.D}(A\mathbin{\#}H) =\mathrm{l.cot.D}(A). $$ As applications, we study the invariants of IF properties and Gorenstein global dimensions.
Keywords: Hopf algebra, smash product, projective dimension, Gorenstein dimension.
Mots-clés : cotorsion dimension
@article{MZM_2013_93_4_a11,
     author = {Xiuli Chen and Haiyan Zhu and Fang Li},
     title = {Cotorsion {Dimensions} and {Hopf} {Algebra} {Actions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {614--623},
     publisher = {mathdoc},
     volume = {93},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a11/}
}
TY  - JOUR
AU  - Xiuli Chen
AU  - Haiyan Zhu
AU  - Fang Li
TI  - Cotorsion Dimensions and Hopf Algebra Actions
JO  - Matematičeskie zametki
PY  - 2013
SP  - 614
EP  - 623
VL  - 93
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a11/
LA  - ru
ID  - MZM_2013_93_4_a11
ER  - 
%0 Journal Article
%A Xiuli Chen
%A Haiyan Zhu
%A Fang Li
%T Cotorsion Dimensions and Hopf Algebra Actions
%J Matematičeskie zametki
%D 2013
%P 614-623
%V 93
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a11/
%G ru
%F MZM_2013_93_4_a11
Xiuli Chen; Haiyan Zhu; Fang Li. Cotorsion Dimensions and Hopf Algebra Actions. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 614-623. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a11/

[1] S. Montgomery, Hopf Algebras and their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[2] G. X. Liu, Classification of Finite Dimensional Basic Hopf Algebras and Related Topics, Dissertation for the Doctoral Degree, Zhejiang University, Hangzhou, 2005

[3] F. van Oystaeyen, Y. Xu, Y. Zhang, “Inductions and coinduction for Hopf Extensions”, Sci. China. Ser. A, 39:3 (1996), 246–263 | MR | Zbl

[4] G. Liu, “A note on the global dimension of smash products”, Comm. Algebra, 33:8 (2005), 2625–2657 | MR | Zbl

[5] S. Yang, “Global dimension for Hopf actions”, Comm. Algebra, 30:8 (2002), 3653–3667 | DOI | MR | Zbl

[6] L. Mao, N. Ding, “The cotorsion dimension of modules and rings”, Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., 249, Chapman Hall/CRC, Boca Raton, FL,, 2005, 217–233 | DOI | MR | Zbl

[7] S. M. Woods, “On perfect group rings”, Proc. Amer. Math. Soc., 27 (1971), 49–52 | DOI | MR | Zbl

[8] D. Bennis, N. Mahdou, “Gorenstein global dimensions and cotorsion dimension of rings”, Comm. Algebra, 37:5 (2009), 1709–1718 | DOI | MR | Zbl

[9] D. Bennis, N. Mahdou, “Global Gorenstein dimensions”, Proc. Amer. Math. Soc., 138:2 (2010), 461–465 | DOI | MR | Zbl

[10] M. E. Lorenz, M. Lorenz, “On crossed products of Hopf algebras”, Proc. Amer. Math. Soc., 123:1 (1995), 33–38 | DOI | MR | Zbl

[11] J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math., 85, Academic Press, New York, 1979 | MR | Zbl

[12] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., 30, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[13] B. Stenström, “Coherent rings and FP-injective modules”, J. London Math. Soc. (2), 2 (1970), 323–329 | DOI | MR | Zbl

[14] N. Ding, J. Chen, “Coherent rings with finite self-FP-injective dimension”, Comm. Algebra, 24:9 (1996), 2963–2980 | DOI | MR | Zbl

[15] X. Chen, H. Zhu, F. Li, “Invariants of FP-projective dimensions under Hopf Algebra actions” (to appear)

[16] N. Mahdou, M. Tamekkante, Note on (Weak) Gorenstein Global Dimensions, arXiv: math.AC/0910.5752