Cotorsion Dimensions and Hopf Algebra Actions
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 614-623

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a finite-dimensional Hopf algebra over a field $k$, and let $A$ be an $H$-module algebra. In this paper, we discuss the cotorsion dimension of the smash product $A\mathbin{\#}H$. We prove that $$ \mathrm{l.cot.D}(A\mathbin{\#}H) \leq \mathrm{l.cot.D}(A) + \mathrm{r.D}(H), $$ which generalizes the result of group rings. Moreover, we give some sufficient conditions for which $$ \mathrm{l.cot.D}(A\mathbin{\#}H) =\mathrm{l.cot.D}(A). $$ As applications, we study the invariants of IF properties and Gorenstein global dimensions.
Keywords: Hopf algebra, smash product, projective dimension, Gorenstein dimension.
Mots-clés : cotorsion dimension
@article{MZM_2013_93_4_a11,
     author = {Xiuli Chen and Haiyan Zhu and Fang Li},
     title = {Cotorsion {Dimensions} and {Hopf} {Algebra} {Actions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {614--623},
     publisher = {mathdoc},
     volume = {93},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a11/}
}
TY  - JOUR
AU  - Xiuli Chen
AU  - Haiyan Zhu
AU  - Fang Li
TI  - Cotorsion Dimensions and Hopf Algebra Actions
JO  - Matematičeskie zametki
PY  - 2013
SP  - 614
EP  - 623
VL  - 93
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a11/
LA  - ru
ID  - MZM_2013_93_4_a11
ER  - 
%0 Journal Article
%A Xiuli Chen
%A Haiyan Zhu
%A Fang Li
%T Cotorsion Dimensions and Hopf Algebra Actions
%J Matematičeskie zametki
%D 2013
%P 614-623
%V 93
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a11/
%G ru
%F MZM_2013_93_4_a11
Xiuli Chen; Haiyan Zhu; Fang Li. Cotorsion Dimensions and Hopf Algebra Actions. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 614-623. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a11/