Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_4_a11, author = {Xiuli Chen and Haiyan Zhu and Fang Li}, title = {Cotorsion {Dimensions} and {Hopf} {Algebra} {Actions}}, journal = {Matemati\v{c}eskie zametki}, pages = {614--623}, publisher = {mathdoc}, volume = {93}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a11/} }
Xiuli Chen; Haiyan Zhu; Fang Li. Cotorsion Dimensions and Hopf Algebra Actions. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 614-623. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a11/
[1] S. Montgomery, Hopf Algebras and their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[2] G. X. Liu, Classification of Finite Dimensional Basic Hopf Algebras and Related Topics, Dissertation for the Doctoral Degree, Zhejiang University, Hangzhou, 2005
[3] F. van Oystaeyen, Y. Xu, Y. Zhang, “Inductions and coinduction for Hopf Extensions”, Sci. China. Ser. A, 39:3 (1996), 246–263 | MR | Zbl
[4] G. Liu, “A note on the global dimension of smash products”, Comm. Algebra, 33:8 (2005), 2625–2657 | MR | Zbl
[5] S. Yang, “Global dimension for Hopf actions”, Comm. Algebra, 30:8 (2002), 3653–3667 | DOI | MR | Zbl
[6] L. Mao, N. Ding, “The cotorsion dimension of modules and rings”, Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., 249, Chapman Hall/CRC, Boca Raton, FL,, 2005, 217–233 | DOI | MR | Zbl
[7] S. M. Woods, “On perfect group rings”, Proc. Amer. Math. Soc., 27 (1971), 49–52 | DOI | MR | Zbl
[8] D. Bennis, N. Mahdou, “Gorenstein global dimensions and cotorsion dimension of rings”, Comm. Algebra, 37:5 (2009), 1709–1718 | DOI | MR | Zbl
[9] D. Bennis, N. Mahdou, “Global Gorenstein dimensions”, Proc. Amer. Math. Soc., 138:2 (2010), 461–465 | DOI | MR | Zbl
[10] M. E. Lorenz, M. Lorenz, “On crossed products of Hopf algebras”, Proc. Amer. Math. Soc., 123:1 (1995), 33–38 | DOI | MR | Zbl
[11] J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math., 85, Academic Press, New York, 1979 | MR | Zbl
[12] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., 30, Walter de Gruyter, Berlin, 2000 | MR | Zbl
[13] B. Stenström, “Coherent rings and FP-injective modules”, J. London Math. Soc. (2), 2 (1970), 323–329 | DOI | MR | Zbl
[14] N. Ding, J. Chen, “Coherent rings with finite self-FP-injective dimension”, Comm. Algebra, 24:9 (1996), 2963–2980 | DOI | MR | Zbl
[15] X. Chen, H. Zhu, F. Li, “Invariants of FP-projective dimensions under Hopf Algebra actions” (to appear)
[16] N. Mahdou, M. Tamekkante, Note on (Weak) Gorenstein Global Dimensions, arXiv: math.AC/0910.5752