Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_4_a1, author = {Wenhua Lan and Xiang Lin Wei}, title = {Classification of {Seven-Point} {Four-Distance} {Sets} in the {Plane}}, journal = {Matemati\v{c}eskie zametki}, pages = {492--508}, publisher = {mathdoc}, volume = {93}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a1/} }
Wenhua Lan; Xiang Lin Wei. Classification of Seven-Point Four-Distance Sets in the Plane. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 492-508. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a1/
[1] P. Erdős, P. Fishburn, “Maximum planar sets that determine $k$ distances”, Discrete Math., 160:1-3 (1996), 115–125 | DOI | MR | Zbl
[2] M. Shinohara, “Classification of three-distance sets in two dimensional Euclidean space”, European J. Combin., 25:7 (2004), 1039–1058 | DOI | MR | Zbl
[3] M. Shinohara, “Uniqueness of maximum planar five-distance sets”, Discrete Math., 308:14 (2008), 3048–3055 | DOI | MR | Zbl
[4] P. Erdős, P. Fishburn, “Convex nonagons with five intervertex distances”, Geom. Dedicata, 60:3 (1996), 317–332 | MR | Zbl
[5] P. Fishburn, “Convex polygons with few intervertex distances”, Comput. Geom., 5:2 (1995), 65–93 | DOI | MR | Zbl
[6] Xianglin Wei, “Classification of eleven-point five-distance sets in the plane”, Ars Combin., 102 (2011), 505–515 | MR | Zbl