Classification of Seven-Point Four-Distance Sets in the Plane
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 492-508
Voir la notice de l'article provenant de la source Math-Net.Ru
A point set $X$ in the plane is called a $k$-distance set if there are exactly $k$ different distances between two distinct points in $X$. In this paper, we classify $7$-point $4$-distance sets and show that there are forty two $7$-point $4$-distance sets in the plane up to isomorphism, we also give some results about diameter graphs.
Keywords:
$n$-point $k$-distance set, diameter graph.
Mots-clés : isomorphism
Mots-clés : isomorphism
@article{MZM_2013_93_4_a1,
author = {Wenhua Lan and Xiang Lin Wei},
title = {Classification of {Seven-Point} {Four-Distance} {Sets} in the {Plane}},
journal = {Matemati\v{c}eskie zametki},
pages = {492--508},
publisher = {mathdoc},
volume = {93},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a1/}
}
Wenhua Lan; Xiang Lin Wei. Classification of Seven-Point Four-Distance Sets in the Plane. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 492-508. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a1/