On the Residual Finiteness of Free Products of Solvable Minimax Groups with Cyclic Amalgamated Subgroups
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 483-491
Voir la notice de l'article provenant de la source Math-Net.Ru
A necessary and sufficient condition for the residual finiteness of a (generalized) free product of two residually finite solvable-by-finite minimax groups with cyclic amalgamated subgroups is obtained. This generalizes the well-known Dyer theorem claiming that every free product of two polycyclic-by-finite groups with cyclic amalgamated subgroups is a residually finite group.
Keywords:
residually finite group, (generalized) free product with amalgamated subgroups, polycyclic-by-finite group, minimax group, subnormal series, Fitting subgroup, FATR group.
Mots-clés : solvable group, Chernikov group
Mots-clés : solvable group, Chernikov group
@article{MZM_2013_93_4_a0,
author = {D. N. Azarov},
title = {On the {Residual} {Finiteness} of {Free} {Products} of {Solvable} {Minimax} {Groups} with {Cyclic} {Amalgamated} {Subgroups}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--491},
publisher = {mathdoc},
volume = {93},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a0/}
}
TY - JOUR AU - D. N. Azarov TI - On the Residual Finiteness of Free Products of Solvable Minimax Groups with Cyclic Amalgamated Subgroups JO - Matematičeskie zametki PY - 2013 SP - 483 EP - 491 VL - 93 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a0/ LA - ru ID - MZM_2013_93_4_a0 ER -
D. N. Azarov. On the Residual Finiteness of Free Products of Solvable Minimax Groups with Cyclic Amalgamated Subgroups. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 483-491. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a0/