Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_4_a0, author = {D. N. Azarov}, title = {On the {Residual} {Finiteness} of {Free} {Products} of {Solvable} {Minimax} {Groups} with {Cyclic} {Amalgamated} {Subgroups}}, journal = {Matemati\v{c}eskie zametki}, pages = {483--491}, publisher = {mathdoc}, volume = {93}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a0/} }
TY - JOUR AU - D. N. Azarov TI - On the Residual Finiteness of Free Products of Solvable Minimax Groups with Cyclic Amalgamated Subgroups JO - Matematičeskie zametki PY - 2013 SP - 483 EP - 491 VL - 93 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a0/ LA - ru ID - MZM_2013_93_4_a0 ER -
D. N. Azarov. On the Residual Finiteness of Free Products of Solvable Minimax Groups with Cyclic Amalgamated Subgroups. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 483-491. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a0/
[1] G. Baumslag, “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | DOI | MR | Zbl
[2] J. L. Dyer, “On the residual finiteness of generalized free products”, Trans. Amer. Math. Soc., 133 (1968), 131–143 | DOI | MR | Zbl
[3] J. Lennox, D. J. Robinson, The Theory of Infinite Soluble Groups, Oxford Math. Monogr., The Clarendon Press, Oxford, 2004 | MR | Zbl
[4] G. Baumslag, D. Solitar, “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR | Zbl
[5] A. I. Maltsev, “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivanovsk. ped. in-ta, 18:5 (1958), 49–60
[6] K. A. Hirsch, “On infinite soluble groups (IV)”, J. London Math. Soc., 27 (1952), 81–85 | DOI | MR | Zbl
[7] M. Shirvani, “A convers to a residual finiteness theorem of G. Baumslag”, Proc. Amer. Math. Soc., 104:3 (1988), 703–706 | DOI | MR | Zbl