Maps to Spaces of Compacta Determined by Limit Sets
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 368-372
Voir la notice de l'article provenant de la source Math-Net.Ru
For a sequence of functions on the unit disk $D\subset\mathbb C$, the map of the boundary circle to a space of compact sets with Hausdorff metric which takes each point $e^{i\theta}\in\partial D$ to the limit set of the sequence of functions at this point is considered. It is shown that such a map is of Borel class at most 4.
Keywords:
Borel map, limit set of a sequence of functions, Hausdorff metric.
Mots-clés : Borel class
Mots-clés : Borel class
@article{MZM_2013_93_3_a4,
author = {A. P. Devyatkov},
title = {Maps to {Spaces} of {Compacta} {Determined} by {Limit} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {368--372},
publisher = {mathdoc},
volume = {93},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a4/}
}
A. P. Devyatkov. Maps to Spaces of Compacta Determined by Limit Sets. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 368-372. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a4/