Maps to Spaces of Compacta Determined by Limit Sets
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 368-372.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence of functions on the unit disk $D\subset\mathbb C$, the map of the boundary circle to a space of compact sets with Hausdorff metric which takes each point $e^{i\theta}\in\partial D$ to the limit set of the sequence of functions at this point is considered. It is shown that such a map is of Borel class at most 4.
Keywords: Borel map, limit set of a sequence of functions, Hausdorff metric.
Mots-clés : Borel class
@article{MZM_2013_93_3_a4,
     author = {A. P. Devyatkov},
     title = {Maps to {Spaces} of {Compacta} {Determined} by {Limit} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {368--372},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a4/}
}
TY  - JOUR
AU  - A. P. Devyatkov
TI  - Maps to Spaces of Compacta Determined by Limit Sets
JO  - Matematičeskie zametki
PY  - 2013
SP  - 368
EP  - 372
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a4/
LA  - ru
ID  - MZM_2013_93_3_a4
ER  - 
%0 Journal Article
%A A. P. Devyatkov
%T Maps to Spaces of Compacta Determined by Limit Sets
%J Matematičeskie zametki
%D 2013
%P 368-372
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a4/
%G ru
%F MZM_2013_93_3_a4
A. P. Devyatkov. Maps to Spaces of Compacta Determined by Limit Sets. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 368-372. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a4/

[1] K. Nosiro, Predelnye mnozhestva, IL, M., 1963 | MR | Zbl

[2] E. Kollingvud, A. Lovater, Teoriya predelnykh mnozhestv, Biblioteka sbornika “Matematika”, Mir, M., 1971 | MR | Zbl

[3] A. Lovater, “Granichnoe povedenie analiticheskikh funktsii”, Itogi nauki i tekhn. Ser. Mat. anal., 10, VINITI, M., 1973, 99–259 | MR | Zbl

[4] V. I. Kruglikov, “Predelnye mnozhestva posledovatelnosti funktsii”, DAN, 357:1 (1997), 16–18 | MR | Zbl

[5] A. P. Devyatkov, V. I. Kruglikov, “O stiranii osobennostei posledovatelnostei analiticheskikh funktsii”, DAN, 406:5 (2006), 591–592 | MR | Zbl

[6] A. P. Devyatkov, “Dve illyustratsii ponyatiya predelnogo mnozhestva posledovatelnosti funktsii”, Vest. TyumGU, 2007, no. 5, 3–12

[7] A. P. Devyatkov, Predelnye mnozhestva, granichnye svoistva i ustranimye osobennosti posledovatelnostei funktsii, Dis. $\dots$ kand. fiz.-matem. nauk, Tyumen, 2008

[8] N. B. Malysheva, “O topologicheskikh svoistvakh otobrazhenii, porozhdaemykh predelnymi mnozhestvami”, Sib. matem. zhurn., 21:5 (1980), 185–186 | Zbl

[9] N. B. Malysheva, “O predelnykh mnozhestvakh otobrazhenii topologicheskikh prostranstv”, DAN SSSR, 264:5 (1982), 1069–1073 | MR | Zbl

[10] A. N. Tikhonov, “Ob universalnom topologicheskom prostranstve”, DAN SSSR, 3:2 (1936), 49–51 | Zbl

[11] V. I. Ponomarev, “Novoe prostranstvo zamknutykh mnozhestv i mnogoznachnye nepreryvnye otobrazheniya bikompaktov”, Matem. sb., 48:2 (1959), 191–212 | MR | Zbl

[12] F. Khausdorf, Teoriya mnozhestv, ONTI, M.–L., 1937 | Zbl

[13] K. Kuratovskii, Topologiya, T. 1, Mir, M., 1966 | MR | Zbl