Infinite-Dimensional Quasigroups of Finite Orders
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 457-465
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Sigma$ be a finite set of cardinality $k>0$, let $\mathbb{A}$ be a finite or infinite set of indices, and let $\mathcal{F}\subseteq\Sigma^\mathbb{A}$ be a subset consisting of finitely supported families. A function $f\colon\Sigma^\mathbb{A}\to\Sigma$ is referred to as an $\mathbb{A}$-quasigroup (if $|\mathbb{A}|=n$, then an $n$-ary quasigroup) of order $k$ if $f(\overline{y})\neq f(\overline{z})$ for any ordered families $\overline{y}$ and $\overline{z}$ that differ at exactly one position. It is proved that an $\mathbb{A}$-quasigroup $f$ of order $4$ is separable (representable as a superposition) or semilinear on every coset of $\mathcal{F}$. It is shown that the quasigroups defined on $\Sigma^\mathbb{N}$, where $\mathbb{N}$ are positive integers, generate Lebesgue nonmeasurable subsets of the interval $[0,1]$.
Keywords:
$n$-ary quasigroup, separable quasigroup, Lebesgue nonmeasurable sets, semilinear quasigroup, Boolean function.
@article{MZM_2013_93_3_a13,
author = {V. N. Potapov},
title = {Infinite-Dimensional {Quasigroups} of {Finite} {Orders}},
journal = {Matemati\v{c}eskie zametki},
pages = {457--465},
publisher = {mathdoc},
volume = {93},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a13/}
}
V. N. Potapov. Infinite-Dimensional Quasigroups of Finite Orders. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 457-465. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a13/