Infinite-Dimensional Quasigroups of Finite Orders
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 457-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Sigma$ be a finite set of cardinality $k>0$, let $\mathbb{A}$ be a finite or infinite set of indices, and let $\mathcal{F}\subseteq\Sigma^\mathbb{A}$ be a subset consisting of finitely supported families. A function $f\colon\Sigma^\mathbb{A}\to\Sigma$ is referred to as an $\mathbb{A}$-quasigroup (if $|\mathbb{A}|=n$, then an $n$-ary quasigroup) of order $k$ if $f(\overline{y})\neq f(\overline{z})$ for any ordered families $\overline{y}$ and $\overline{z}$ that differ at exactly one position. It is proved that an $\mathbb{A}$-quasigroup $f$ of order $4$ is separable (representable as a superposition) or semilinear on every coset of $\mathcal{F}$. It is shown that the quasigroups defined on $\Sigma^\mathbb{N}$, where $\mathbb{N}$ are positive integers, generate Lebesgue nonmeasurable subsets of the interval $[0,1]$.
Keywords: $n$-ary quasigroup, separable quasigroup, Lebesgue nonmeasurable sets, semilinear quasigroup, Boolean function.
@article{MZM_2013_93_3_a13,
     author = {V. N. Potapov},
     title = {Infinite-Dimensional {Quasigroups} of {Finite} {Orders}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {457--465},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a13/}
}
TY  - JOUR
AU  - V. N. Potapov
TI  - Infinite-Dimensional Quasigroups of Finite Orders
JO  - Matematičeskie zametki
PY  - 2013
SP  - 457
EP  - 465
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a13/
LA  - ru
ID  - MZM_2013_93_3_a13
ER  - 
%0 Journal Article
%A V. N. Potapov
%T Infinite-Dimensional Quasigroups of Finite Orders
%J Matematičeskie zametki
%D 2013
%P 457-465
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a13/
%G ru
%F MZM_2013_93_3_a13
V. N. Potapov. Infinite-Dimensional Quasigroups of Finite Orders. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 457-465. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a13/

[1] V. D. Belousov, $n$-Arnye kvazigruppy, Shtiintsa, Kishinev, 1972 | MR | Zbl

[2] V. N. Potapov, D. S. Krotov, “Asimptotika chisla $n$-kvazigrupp poryadka 4”, Sib. matem. zhurn., 47:4 (2006), 873–887 | MR | Zbl

[3] A. V. Cheremushkin, “Kanonicheskoe razlozhenie $n$-arnykh kvazigrupp”, Issledovanie operatsii i kvazigrupp, Matem. issledovaniya, 102, Shtiintsa, Kishinev, 1988, 97–105 | MR | Zbl

[4] V. N. Potapov, “O dopolnyaemosti chastichnykh $n$-kvazigrupp poryadka 4”, Matem. tr., 14:2 (2011), 147–172 | MR

[5] D. S. Krotov, “On reducibility of $n$-ary quasigroups”, Discrete Math., 308:22 (2008), 5289–5297 | DOI | MR | Zbl

[6] D. S. Krotov, V. N. Potapov, “$n$-Ary quasigroups of order $4$”, SIAM J. Discrete Math., 23:2 (2009), 561–570 | DOI | MR | Zbl