On the Minimal Positive Homothetic Image of a Simplex Containing a Convex Body
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 448-456
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $C$ be a convex body, and let $S$ be a nondegenerate simplex in $\mathbb R^n$. It is proved that the minimal coefficient $\sigma>0$ for which the translate of $\sigma S$ contains $C$ is $$ \sum_{j=1}^{n+1}\max_{x\in C}(-\lambda_j(x))+1, $$ where $\lambda_1(x),\dots,\lambda_{n+1}(x)$ are the barycentric coordinates of the point $x\in\mathbb R^n$ with respect to $S$. In the case $C=[0,1]^n$, this quantity is reduced to the form $\sum_{i=1}^n 1/d_i(S)$, where $d_i(S)$ is the $i$th axial diameter of $S$, i.e., the maximal length of the segment from $S$ parallel to the $i$th coordinate axis.
Keywords:
$n$-dimensional simplex, homothetic image of a simplex, translate, axial diameter of a simplex, barycentric coordinates, convex body.
@article{MZM_2013_93_3_a12,
author = {M. V. Nevskii},
title = {On the {Minimal} {Positive} {Homothetic} {Image} of a {Simplex} {Containing} a {Convex} {Body}},
journal = {Matemati\v{c}eskie zametki},
pages = {448--456},
year = {2013},
volume = {93},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a12/}
}
M. V. Nevskii. On the Minimal Positive Homothetic Image of a Simplex Containing a Convex Body. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 448-456. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a12/
[1] P. R. Scott, “Lattices and convex sets in space”, Quart. J. Math. Oxford Ser. (2), 36:143 (1985), 359–362 | DOI | MR | Zbl
[2] P. R. Scott, “Properties of axial diameters”, Bull. Austral. Math. Soc., 39:3 (1989), 329–333 | DOI | MR | Zbl
[3] M. V. Nevskii, “Ob osevykh diametrakh vypuklogo tela”, Matem. zametki, 90:2 (2011), 313–315 | DOI | MR
[4] M. Nevskii, “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR | Zbl
[5] M. V. Nevskii, “Ob odnom svoistve $n$-mernogo simpleksa”, Matem. zametki, 87:4 (2010), 580–593 | DOI | MR | Zbl