On the Minimal Positive Homothetic Image of a Simplex Containing a Convex Body
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 448-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be a convex body, and let $S$ be a nondegenerate simplex in $\mathbb R^n$. It is proved that the minimal coefficient $\sigma>0$ for which the translate of $\sigma S$ contains $C$ is $$ \sum_{j=1}^{n+1}\max_{x\in C}(-\lambda_j(x))+1, $$ where $\lambda_1(x),\dots,\lambda_{n+1}(x)$ are the barycentric coordinates of the point $x\in\mathbb R^n$ with respect to $S$. In the case $C=[0,1]^n$, this quantity is reduced to the form $\sum_{i=1}^n 1/d_i(S)$, where $d_i(S)$ is the $i$th axial diameter of $S$, i.e., the maximal length of the segment from $S$ parallel to the $i$th coordinate axis.
Keywords: $n$-dimensional simplex, homothetic image of a simplex, translate, axial diameter of a simplex, barycentric coordinates, convex body.
@article{MZM_2013_93_3_a12,
     author = {M. V. Nevskii},
     title = {On the {Minimal} {Positive} {Homothetic} {Image} of a {Simplex} {Containing} a {Convex} {Body}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {448--456},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a12/}
}
TY  - JOUR
AU  - M. V. Nevskii
TI  - On the Minimal Positive Homothetic Image of a Simplex Containing a Convex Body
JO  - Matematičeskie zametki
PY  - 2013
SP  - 448
EP  - 456
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a12/
LA  - ru
ID  - MZM_2013_93_3_a12
ER  - 
%0 Journal Article
%A M. V. Nevskii
%T On the Minimal Positive Homothetic Image of a Simplex Containing a Convex Body
%J Matematičeskie zametki
%D 2013
%P 448-456
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a12/
%G ru
%F MZM_2013_93_3_a12
M. V. Nevskii. On the Minimal Positive Homothetic Image of a Simplex Containing a Convex Body. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 448-456. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a12/

[1] P. R. Scott, “Lattices and convex sets in space”, Quart. J. Math. Oxford Ser. (2), 36:143 (1985), 359–362 | DOI | MR | Zbl

[2] P. R. Scott, “Properties of axial diameters”, Bull. Austral. Math. Soc., 39:3 (1989), 329–333 | DOI | MR | Zbl

[3] M. V. Nevskii, “Ob osevykh diametrakh vypuklogo tela”, Matem. zametki, 90:2 (2011), 313–315 | DOI | MR

[4] M. Nevskii, “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR | Zbl

[5] M. V. Nevskii, “Ob odnom svoistve $n$-mernogo simpleksa”, Matem. zametki, 87:4 (2010), 580–593 | DOI | MR | Zbl