Explicit Solutions of Boundary-Value Problems for $(2+1)$-Dimensional Integrable Systems
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 333-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two nonlinear integrable models with two space variables and one time variable, the Kadomtsev–Petviashvili equation and the two-dimensional Toda chain, are studied as well-posed boundary-value problems that can be solved by the inverse scattering method. It is shown that there exists a multitude of integrable boundary-value problems and, for these problems, various curves can be chosen as boundary contours; besides, the problems in question become problems with moving boundaries. A method for deriving explicit solutions of integrable boundary-value problems is described and its efficiency is illustrated by several examples. This allows us to interpret the integrability phenomenon of the boundary condition in the traditional sense, namely as a condition for the availability of wide classes of solutions that can be written in terms of well-known functions.
Keywords: Kadomtsev–Petviashvili equation, Toda chain, boundary-value problem, inverse scattering method, $(2+1)$-dimensional integrable systems, Lax representation, dressing method
Mots-clés : Gelfand–Levitan–Marchenko equation, soliton solution.
@article{MZM_2013_93_3_a1,
     author = {V. L. Vereshchagin},
     title = {Explicit {Solutions} of {Boundary-Value} {Problems} for $(2+1)${-Dimensional} {Integrable} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {333--346},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a1/}
}
TY  - JOUR
AU  - V. L. Vereshchagin
TI  - Explicit Solutions of Boundary-Value Problems for $(2+1)$-Dimensional Integrable Systems
JO  - Matematičeskie zametki
PY  - 2013
SP  - 333
EP  - 346
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a1/
LA  - ru
ID  - MZM_2013_93_3_a1
ER  - 
%0 Journal Article
%A V. L. Vereshchagin
%T Explicit Solutions of Boundary-Value Problems for $(2+1)$-Dimensional Integrable Systems
%J Matematičeskie zametki
%D 2013
%P 333-346
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a1/
%G ru
%F MZM_2013_93_3_a1
V. L. Vereshchagin. Explicit Solutions of Boundary-Value Problems for $(2+1)$-Dimensional Integrable Systems. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 333-346. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a1/

[1] B. B. Kadomtsev, V. I. Petviashvili, “Ob ustoichivosti uedinennykh voln v srede so slaboi dispersiei”, Dokl. AN SSSR, 192:4 (1970), 753–756 | Zbl

[2] A. V. Mikhailov, “Ob integriruemosti dvumernogo obobscheniya tsepochki Toda”, Pisma v ZhETF, 30:7 (1979), 443–448

[3] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[4] V. S. Dryuma, “Ob analiticheskom reshenii dvumernogo uravneniya Kortevega–de Friza (KdF)”, Pisma v ZhETF, 19:12 (1974), 753–755

[5] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | MR | Zbl

[6] E. K. Sklyanin, “Granichnye usloviya dlya integriruemykh uravnenii”, Funkts. analiz i ego pril., 21:2 (1987), 86–87 | MR | Zbl

[7] I. T. Khabibullin, “Granichnye zadachi na poluploskosti dlya uravneniya Ishimori, sovmestimye s metodom obratnoi zadachi rasseyaniya”, TMF, 91:3 (1992), 363–376 | MR | Zbl

[8] I. T. Khabibullin, E. V. Gudkova, “Kraevye usloviya dlya mnogomernykh integriruemykh uravnenii”, Funkts. analiz i ego pril., 38:2 (2004), 71–83 | DOI | MR | Zbl

[9] I. T. Khabibullin, E. V. Gudkova, “Uravnenie Kadomtseva–Petviashvili na poluploskosti”, TMF, 140:2 (2004), 230–240 | DOI | MR | Zbl

[10] V. Adler, B. Gürel, M. Gürses, I. T. Habibullin, “Boundary conditions for integrable equations”, J. Phys. A: Math. Gen., 30:10 (1997), 3505–3513 | DOI | MR | Zbl

[11] M. Gürses, I. Habibullin, K. Zheltukhin, “Integrable boundary value problems for elliptic type Toda lattice in a disk”, J. Math. Phys., 48:10 (2007), 102702 | DOI | MR | Zbl

[12] J. Stefan, “Über die Theorie der Eisbuidung, Insbesondere Über die Eisbildung im Polarmeere”, Sitzungsber. Wien. Akad. Math. Naturwiss., 98 (1890), 473–484

[13] A. V. Mikhailov, “The reduction problem and the inverse scattering method”, Phys. D, 3:1-2 (1981), 73–117 | DOI | Zbl

[14] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations, Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 1–95 | MR | Zbl

[15] A. Nakamura, “Exact Bessel type solution of the two-dimensional Toda lattice equation”, J. Phys. Soc. Japan, 52:2 (1983), 380–387 | DOI | MR

[16] M. V. Babich, V. B. Matveev, M. A. Sall, “Binarnoe preobrazovanie Darbu dlya tsepochki Tody”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki, 5, Zap. nauchn. sem. LOMI, 145, Izd-vo «Nauka», Leningrad. otd., L., 1985, 34–45 | MR | Zbl

[17] I. T. Habibullin, A. N. Vil'danov, “Integrable boundary conditions for nonlinear lattices”, SIDE III – Symmetries and Integrability of Difference Equations, CRM Proc. Lecture Notes, 25, Amer. Math. Soc., Providence, RI, 2000, 173–180 | MR | Zbl