Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 246-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_1,\dots,B_k$ be Busemann–Feller and regular differential bases composed of intervals of the corresponding dimensions. It is proved that if $B_1,\dots,B_k$ satisfy a certain condition (called the completeness condition), then, for their Cartesian product $B_1\times \dotsb\times B_k$, an analog of Besicovitch's theorem on the possible values of strong upper and lower derivatives is valid.
Keywords: Besicovitch's theorem on the values of upper and lower derivatives, Busemann–Feller basis, regular differentiation basis.
@article{MZM_2013_93_2_a8,
     author = {G. G. Oniani},
     title = {Note on {Besicovitch's} {Theorem} on the {Possible} {Values} of {Upper} and {Lower} {Derivatives}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {246--251},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a8/}
}
TY  - JOUR
AU  - G. G. Oniani
TI  - Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives
JO  - Matematičeskie zametki
PY  - 2013
SP  - 246
EP  - 251
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a8/
LA  - ru
ID  - MZM_2013_93_2_a8
ER  - 
%0 Journal Article
%A G. G. Oniani
%T Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives
%J Matematičeskie zametki
%D 2013
%P 246-251
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a8/
%G ru
%F MZM_2013_93_2_a8
G. G. Oniani. Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 246-251. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a8/

[1] S. Saks, “Remarks on the differentiability of the Lebesgue indefinite integral”, Fund. Math., 22 (1934), 257–261 | Zbl

[2] A. S. Besicovitch, “On differentiation of Lebesgue double integrals”, Fund. Math., 25 (1935), 209–216 | Zbl

[3] A. J. Ward, “On the derivation of additive functions of intervals in $m$-dimensional space”, Fund. Math., 28 (1937), 265–279 | Zbl

[4] M. de Guzmán, Real Variable Methods in Fourier Analysis, North-Holland Math. Stud., 46, North-Holland, Amsterdam, 1981 | MR | Zbl

[5] M. de Guzmán, Differentiation of Integrals in $\mathbb R^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin, 1975 | MR | Zbl

[6] G. G. Oniani, “O vozmozhnykh znacheniyakh verkhnei i nizhnei proizvodnykh otnositelno vypuklykh differentsialnykh bazisov”, Matem. zametki, 76:5 (2004), 762–775 | DOI | MR | Zbl

[7] G. G. Oniani, “O vozmozhnykh znacheniyakh verkhnei i nizhnei proizvodnykh”, Matem. zametki, 64:1 (1998), 107–114 | DOI | MR | Zbl

[8] A. A. Korenovskyy, A. K. Lerner, A. M. Stokolos, “On a multidimensional form of F. Riesz's “rising sun” lemma”, Proc. Amer. Math. Soc., 133:5 (2005), 1437–1440 | DOI | MR | Zbl

[9] T. Zerekidze, “Differentiation of integrals by bases of type $\Pi$”, Proc. A. Razmadze Math. Inst., 133 (2003), 119–130 | MR | Zbl

[10] T. Zerekidze, “On the equivalence and nonequivalence of some differential bases”, Proc. A. Razmadze Math. Inst., 133 (2003), 166–169 | MR | Zbl

[11] G. G. Oniani, “A generalization of Besicovitch theorem on the possible values of upper and lower derivatives”, Proc. A. Razmadze Math. Inst., 154 (2010), 160–162 | MR | Zbl

[12] S. Saks, Theory of the Integral, Dover Publ., New York, 1964 | MR | Zbl