Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 246-251

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_1,\dots,B_k$ be Busemann–Feller and regular differential bases composed of intervals of the corresponding dimensions. It is proved that if $B_1,\dots,B_k$ satisfy a certain condition (called the completeness condition), then, for their Cartesian product $B_1\times \dotsb\times B_k$, an analog of Besicovitch's theorem on the possible values of strong upper and lower derivatives is valid.
Keywords: Besicovitch's theorem on the values of upper and lower derivatives, Busemann–Feller basis, regular differentiation basis.
@article{MZM_2013_93_2_a8,
     author = {G. G. Oniani},
     title = {Note on {Besicovitch's} {Theorem} on the {Possible} {Values} of {Upper} and {Lower} {Derivatives}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {246--251},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a8/}
}
TY  - JOUR
AU  - G. G. Oniani
TI  - Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives
JO  - Matematičeskie zametki
PY  - 2013
SP  - 246
EP  - 251
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a8/
LA  - ru
ID  - MZM_2013_93_2_a8
ER  - 
%0 Journal Article
%A G. G. Oniani
%T Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives
%J Matematičeskie zametki
%D 2013
%P 246-251
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a8/
%G ru
%F MZM_2013_93_2_a8
G. G. Oniani. Note on Besicovitch's Theorem on the Possible Values of Upper and Lower Derivatives. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 246-251. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a8/