Asymptotics of an Eigenvalue on the Continuous Spectrum of Two Quantum Waveguides Coupled through Narrow Windows
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 227-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions under which two planar identical waveguides coupled through narrow windows of width $\varepsilon\ll 1$ have an eigenvalue on the continuous spectrum are obtained. It is established that the eigenvalue appears only for certain values of the distance between the windows: for each sufficiently small $\varepsilon>0$, there exists a sequence $(2N-1)/\sqrt{3}+O(\varepsilon)$ of such distances; here $N=1,2,3,\dots$ . The result is obtained by the asymptotic analysis of an auxiliary object, namely, the augmented scattering matrix.
Keywords: planar waveguide, window-coupled quantum waveguides, augmented scattering matrix, Laplace operator, Dirichlet boundary condition, Neumann boundary condition, Helmholtz equation, Wood's anomalies.
@article{MZM_2013_93_2_a7,
     author = {S. A. Nazarov},
     title = {Asymptotics of an {Eigenvalue} on the {Continuous} {Spectrum} of {Two} {Quantum} {Waveguides} {Coupled} through {Narrow} {Windows}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {227--245},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a7/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotics of an Eigenvalue on the Continuous Spectrum of Two Quantum Waveguides Coupled through Narrow Windows
JO  - Matematičeskie zametki
PY  - 2013
SP  - 227
EP  - 245
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a7/
LA  - ru
ID  - MZM_2013_93_2_a7
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotics of an Eigenvalue on the Continuous Spectrum of Two Quantum Waveguides Coupled through Narrow Windows
%J Matematičeskie zametki
%D 2013
%P 227-245
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a7/
%G ru
%F MZM_2013_93_2_a7
S. A. Nazarov. Asymptotics of an Eigenvalue on the Continuous Spectrum of Two Quantum Waveguides Coupled through Narrow Windows. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 227-245. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a7/

[1] P. Exner, P. Šeba, M. Tater, D. Vaněk, “Bound states and scattering in quantum waveguides coupled laterally through a boundary window”, J. Math. Phys., 37:10 (1996), 4867–4887 | DOI | MR | Zbl

[2] W. Bulla, F. Gesztesy, W. Renrer, B. Simon, “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl

[3] Y. Hirayama, Y. Tokura, A. D. Wieck, S. Koch, R. J. Haug, K. von Klitzing, K. Ploog, “Transport characteristics of a window coupled in-plane-gated wire system”, Phys. Rev. B, 48:11 (1993), 7991–7998 | DOI

[4] P. Exner, S. A. Vugalter, “Asymptotics estimates for bound states in quantum waveguides coupled laterally through a narrow window”, Ann. Inst. H. Poincaré Phys. Théor., 65:1 (1996), 109–123 | MR | Zbl

[5] I. Yu. Popov, “Asymptotics of bound states for laterally coupled waveguides”, Rep. Math. Phys., 43:3 (1997), 427–437 | DOI | MR | Zbl

[6] R. R. Gadyl'shin, “On regular and singular perurbation of acoustic and quantum waveguides”, C. R. Mecanique, 332:8 (2002), 647–652 | DOI

[7] P. Exner, S. A. Vugalter, “Bound-state asymptotic estimate for window-coupled Dirichlet strips and layers”, J. Phys. A. Math. Gen., 30:22 (1997), 7863–7878 | DOI | MR | Zbl

[8] D. Borisov, P. Exner, R. Gadyl'shin, “Geometric coupling thresholds in a two-dimensional strip”, J. Math. Phys., 43:12 (2005), 6265–6278 | DOI | MR | Zbl

[9] D. Borisov, T. Ekholm, H. Kovařík, “Spectrum of the magnetic Schrödinger operator in a waveguide with combined boundary conditions”, Ann. Henri Poincaré, 6:2 (2005), 327–342 | DOI | MR | Zbl

[10] D. Borisov, P. Exner, “Exponential splitting of bound states in a waveguide with a pair of distant windows”, J. Phys. A. Math. Gen., 37:10 (2004), 3411–3428 | DOI | MR | Zbl

[11] D. Borisov, P. Exner, “Distant perturbation asymptotics in window-coupled waveguides. I. The nonthreshold case”, J. Math. Phys., 47:11 (2006), 113502 | DOI | MR | Zbl

[12] D. I. Borisov, “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Matem. sb., 197:4 (2006), 3–32 | DOI | MR | Zbl

[13] A. Aslanyan, L. Parnovski, D. Vassiliev, “Complex resonances in acoustic waveguides”, Quart. J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl

[14] S. A. Nazarov, “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, TMF, 167:2 (2011), 239–263 | DOI

[15] I. V. Kamotskii, S. A. Nazarov, “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Matematicheskie voprosy teorii rasprostraneniya voln. 29, Zap. nauchn. sem. POMI, 264, POMI, SPb., 2000, 66–82 | MR | Zbl

[16] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[17] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967 | MR | Zbl

[18] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl

[19] S. A. Nazarov, “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sib. matem. zhurn., 51:5 (2010), 1086–1101 | MR | Zbl

[20] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5(77) (1957), 3–122 | MR | Zbl

[21] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 1. Störungen isolierter Randsingularitäten, Math. Lehrbucher und Monogr. II. Abteilung: Math. Monogr., 82, Akademie-Verlag, Berlin, 1991 | MR

[22] L. I. Sedov, Mekhanika sploshnykh sred, T. 2, 3-e izd., Nauka, M., 1976

[23] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”, Philos. Mag. Ser. 6, 4:21 (1902), 396–402 | DOI

[24] A. Hessel, A. A. Oliner, “A new theory of Wood's anomalies on optical gratings”, Appl. Optics, 4:10 (1965), 1275–1297 | DOI

[25] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR | Zbl

[26] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991