Asymptotics of an Eigenvalue on the Continuous Spectrum of Two Quantum Waveguides Coupled through Narrow Windows
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 227-245
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions under which two planar identical waveguides coupled through narrow windows of width $\varepsilon\ll 1$ have an eigenvalue on the continuous spectrum are obtained. It is established that the eigenvalue appears only for certain values of the distance between the windows: for each sufficiently small $\varepsilon>0$, there exists a sequence $(2N-1)/\sqrt{3}+O(\varepsilon)$ of such distances; here $N=1,2,3,\dots$ . The result is obtained by the asymptotic analysis of an auxiliary object, namely, the augmented scattering matrix.
Keywords:
planar waveguide, window-coupled quantum waveguides, augmented scattering matrix, Laplace operator, Dirichlet boundary condition, Neumann boundary condition, Helmholtz equation, Wood's anomalies.
@article{MZM_2013_93_2_a7,
author = {S. A. Nazarov},
title = {Asymptotics of an {Eigenvalue} on the {Continuous} {Spectrum} of {Two} {Quantum} {Waveguides} {Coupled} through {Narrow} {Windows}},
journal = {Matemati\v{c}eskie zametki},
pages = {227--245},
publisher = {mathdoc},
volume = {93},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a7/}
}
TY - JOUR AU - S. A. Nazarov TI - Asymptotics of an Eigenvalue on the Continuous Spectrum of Two Quantum Waveguides Coupled through Narrow Windows JO - Matematičeskie zametki PY - 2013 SP - 227 EP - 245 VL - 93 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a7/ LA - ru ID - MZM_2013_93_2_a7 ER -
S. A. Nazarov. Asymptotics of an Eigenvalue on the Continuous Spectrum of Two Quantum Waveguides Coupled through Narrow Windows. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 227-245. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a7/