Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_2_a2, author = {Guanwei Chen}, title = {Nonlinear {Elliptic} {Equation} with {Lower} {Order} {Term} and {Degenerate} {Coercivity}}, journal = {Matemati\v{c}eskie zametki}, pages = {179--194}, publisher = {mathdoc}, volume = {93}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a2/} }
Guanwei Chen. Nonlinear Elliptic Equation with Lower Order Term and Degenerate Coercivity. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 179-194. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a2/
[1] A. Porretta, “Uniqueness and homogenization for a class of noncoercive operators in divergence form”, Atti Sem. Mat. Fis. Univ. Modena, 46, Suppl. (1998), 915–936 | MR | Zbl
[2] J. L. Lions, Quelques méthodes de resolution de problèmes aux limites non linéaires, Etudes mathematiques, Dunod, Paris, 1969 | MR | Zbl
[3] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti, “Existence results for nonlinear elliptic equations with degenerate coercivity”, Ann. Mat. Pura Appl. (4), 182:1 (2003), 53–79 | MR | Zbl
[4] L. Boccardo, A. Dall'Aglio, L. Orsina, “Existence and regularity results for some elliptic equations with degenerate coercivity”, Atti Sem. Mat. Fis. Univ. Modena, 46, Suppl. (1998), 51–81 | MR | Zbl
[5] L. Boccardo, H. Brezis, “Some remarks on a class of elliptic equations with degenerate coercivity”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 6:3 (2003), 521–530 | MR | Zbl
[6] L. Boccardo, “Some elliptic problems with degenerate coercivity”, Adv. Nonlinear Stud., 6:1 (2006), 1–12 | MR | Zbl
[7] G. R. Cirmi, “On the existence of solutions to non-linear degenerate elliptic equations with measures data”, Ricerche Mat., 42:2 (1993), 315–329 | MR | Zbl
[8] D. Giachetti, M. M. Porzio, “Existence results for some nonuniformly elliptic equations with irregular data”, J. Math. Anal. Appl., 257:1 (2001), 100–130 | DOI | MR | Zbl
[9] D. Giachetti, M. M. Porzio, “Elliptic equations with degenerate coercivity: gradient regularity”, Acta Math. Sin. (Engl. Ser.), 19:2 (2003), 349–370 | DOI | MR | Zbl
[10] G. Croce, “The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity”, Rend. Mat. Appl. (7), 27:3-4 (2007), 299–314 | MR | Zbl
[11] L. Boccardo, T. Gallouët, J. L. Vázquez, “Nonlinear elliptic equations in $\mathbf R^N$ without growth restrictions on the data”, J. Differential Equations, 105:2 (1993), 334–363 | DOI | MR | Zbl
[12] G. R. Cirmi, “Regularity of the solutions to nonlinear elliptic equations with a lower-order term”, Nonlinear Anal. Theory Methods Appl., 25:6 (1995), 569–580 | DOI | MR | Zbl
[13] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vázquez, “An $L^1$ theory of existence and uniqueness of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl
[14] L. Boccardo, F. Murat, J. P. Puel, “Existence of bounded solutions for nonlinear elliptic unilateral problems”, Ann. Mat. Pura Appl. (4), 152:1 (1988), 183–196 | DOI | MR | Zbl
[15] L. Boccardo, T. Gallorët, “Nonlinear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87:1 (1989), 149–169 | DOI | MR | Zbl
[16] L. Boccardo, T. Gallorët, “Nonlinear elliptic equations with right hand side measure”, Comm. Partial Differential Equations, 17:3-4 (1992), 641–655 | DOI | MR | Zbl