Nonlinear Elliptic Equation with Lower Order Term and Degenerate Coercivity
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 179-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study the regularizing effects of the lower order term in the case of a nonlinear elliptic problem with degenerate coercivity. We show that the presence of certain lower order terms has a regularizing effect on the solutions. The obtained results extend some existing ones.
Keywords: nonlinear elliptic equation, degenerate coercivity, entropy solutions, regularity.
Mots-clés : distributional solutions
@article{MZM_2013_93_2_a2,
     author = {Guanwei Chen},
     title = {Nonlinear {Elliptic} {Equation} with {Lower} {Order} {Term} and {Degenerate} {Coercivity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {179--194},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a2/}
}
TY  - JOUR
AU  - Guanwei Chen
TI  - Nonlinear Elliptic Equation with Lower Order Term and Degenerate Coercivity
JO  - Matematičeskie zametki
PY  - 2013
SP  - 179
EP  - 194
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a2/
LA  - ru
ID  - MZM_2013_93_2_a2
ER  - 
%0 Journal Article
%A Guanwei Chen
%T Nonlinear Elliptic Equation with Lower Order Term and Degenerate Coercivity
%J Matematičeskie zametki
%D 2013
%P 179-194
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a2/
%G ru
%F MZM_2013_93_2_a2
Guanwei Chen. Nonlinear Elliptic Equation with Lower Order Term and Degenerate Coercivity. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 179-194. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a2/

[1] A. Porretta, “Uniqueness and homogenization for a class of noncoercive operators in divergence form”, Atti Sem. Mat. Fis. Univ. Modena, 46, Suppl. (1998), 915–936 | MR | Zbl

[2] J. L. Lions, Quelques méthodes de resolution de problèmes aux limites non linéaires, Etudes mathematiques, Dunod, Paris, 1969 | MR | Zbl

[3] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti, “Existence results for nonlinear elliptic equations with degenerate coercivity”, Ann. Mat. Pura Appl. (4), 182:1 (2003), 53–79 | MR | Zbl

[4] L. Boccardo, A. Dall'Aglio, L. Orsina, “Existence and regularity results for some elliptic equations with degenerate coercivity”, Atti Sem. Mat. Fis. Univ. Modena, 46, Suppl. (1998), 51–81 | MR | Zbl

[5] L. Boccardo, H. Brezis, “Some remarks on a class of elliptic equations with degenerate coercivity”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 6:3 (2003), 521–530 | MR | Zbl

[6] L. Boccardo, “Some elliptic problems with degenerate coercivity”, Adv. Nonlinear Stud., 6:1 (2006), 1–12 | MR | Zbl

[7] G. R. Cirmi, “On the existence of solutions to non-linear degenerate elliptic equations with measures data”, Ricerche Mat., 42:2 (1993), 315–329 | MR | Zbl

[8] D. Giachetti, M. M. Porzio, “Existence results for some nonuniformly elliptic equations with irregular data”, J. Math. Anal. Appl., 257:1 (2001), 100–130 | DOI | MR | Zbl

[9] D. Giachetti, M. M. Porzio, “Elliptic equations with degenerate coercivity: gradient regularity”, Acta Math. Sin. (Engl. Ser.), 19:2 (2003), 349–370 | DOI | MR | Zbl

[10] G. Croce, “The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity”, Rend. Mat. Appl. (7), 27:3-4 (2007), 299–314 | MR | Zbl

[11] L. Boccardo, T. Gallouët, J. L. Vázquez, “Nonlinear elliptic equations in $\mathbf R^N$ without growth restrictions on the data”, J. Differential Equations, 105:2 (1993), 334–363 | DOI | MR | Zbl

[12] G. R. Cirmi, “Regularity of the solutions to nonlinear elliptic equations with a lower-order term”, Nonlinear Anal. Theory Methods Appl., 25:6 (1995), 569–580 | DOI | MR | Zbl

[13] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vázquez, “An $L^1$ theory of existence and uniqueness of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl

[14] L. Boccardo, F. Murat, J. P. Puel, “Existence of bounded solutions for nonlinear elliptic unilateral problems”, Ann. Mat. Pura Appl. (4), 152:1 (1988), 183–196 | DOI | MR | Zbl

[15] L. Boccardo, T. Gallorët, “Nonlinear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87:1 (1989), 149–169 | DOI | MR | Zbl

[16] L. Boccardo, T. Gallorët, “Nonlinear elliptic equations with right hand side measure”, Comm. Partial Differential Equations, 17:3-4 (1992), 641–655 | DOI | MR | Zbl