Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_2_a12, author = {He-Jun Sun}, title = {Inequalities for {Lower-Order} {Eigenvalues} of a {Fourth-Order} {Elliptic} {Operator}}, journal = {Matemati\v{c}eskie zametki}, pages = {286--294}, publisher = {mathdoc}, volume = {93}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a12/} }
He-Jun Sun. Inequalities for Lower-Order Eigenvalues of a Fourth-Order Elliptic Operator. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 286-294. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a12/
[1] L. E. Payne, G. Pólya, H. F. Weinberger, “On the ratio of consecutive eigenvalues”, J. Math. and Phys., 35:5 (1956), 289–298 | MR | Zbl
[2] M. S. Ashbaugh, R. D. Benguria, “Proof of the Payne–Pólya–Weinberger conjecture”, Bull. Amer. Math. Soc. (N.S.), 25:1 (1991), 19–29 | DOI | MR | Zbl
[3] M. S. Ashbaugh, R. D. Benguria, “A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions”, Ann. of Math. (2), 135:3 (1992), 601–628 | DOI | MR | Zbl
[4] M. S. Ashbaugh, R. D. Benguria, “More bounds on eigenvalue ratios for Dirichlet Laplacians in $n$ dimension”, SIAM J. Math. Anal., 24:6 (1993), 1622–1651 | DOI | MR | Zbl
[5] H. Sun, Q.-M. Cheng, H. Yang, “Lower order eigenvalues of Dirichlet Laplacian”, Manuscripta Math., 125:2 (2008), 139–156 | DOI | MR | Zbl
[6] D. Chen, Q.-M. Cheng, “Extrinsic estimates for eigenvalues of the Laplace operator”, J. Math. Soc. Japan, 60:2 (2008), 325–339 | DOI | MR | Zbl
[7] M. S. Ashbaugh, “Isoperimetric and universal inequalities for eigenvalues”, Spectral Theory and Geometry (Edinburgh, 1998), London Math. Soc. Lecture Notes, 273, Cambridge Univ. Press, Cambridge, 1999, 95–139 | MR | Zbl
[8] Q.-M. Cheng, T. Ichikawa, S. Mametsuka, “Inequalities for eigenvalues of Laplacian with any order”, Commun. Contemp. Math., 11:4 (2009), 639–655 | DOI | MR | Zbl
[9] Q.-M. Cheng, G. Huang, G. Wei, “Estimates for lower order eigenvalues of a clamped plate problem”, Calc. Var. Partial Differential Equations, 38:3-4 (2010), 409–416 | DOI | MR | Zbl
[10] E. B. Davies, “Uniformly elliptic operators with measurable coefficients”, J. Funct. Anal., 132:1 (1995), 141–169 | DOI | MR | Zbl
[11] A. Henrot, Extremun Problems for Eigenvalues of Elliptic Operators, Front. Math., Birkhäuser Verlag, Basel, 2006 | MR | Zbl
[12] S. M. Hook, “Domain-independent upper bounds for eigenvalues of elliptic operator”, Trans. Amer. Math. Soc., 318:2 (1990), 615–642 | DOI | MR | Zbl
[13] C. Qian, Z. Chen, “Estimates of eigenvalues for uniformly elliptic operator of second order”, Acta Math. Appl. Sinica (English Ser.), 10:4 (1994), 349–355 | DOI | MR | Zbl
[14] H. J. Sun, “Yang-type inequalities for weighted eigenvalues of a second order uniformly elliptic operator with a nonnegative potential”, Proc. Amer. Math. Soc., 138:8 (2010), 2827–2837 | DOI | MR | Zbl