Inequalities for Lower-Order Eigenvalues of a Fourth-Order Elliptic Operator
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 286-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the Dirichlet weighted eigenvalues problem of a fourth-order elliptic operator with variable coefficients on a bounded domain with smooth boundary in $\mathbb{R}^n$. We establish some inequalities for lower-order eigenvalues of this problem. In particular, our results contain an inequality for eigenvalues of the biharmonic operator derived by Cheng, Huang, and Wei.
Keywords: eigenvalue, elliptic operator, biharmonic operator, Laplace operator.
@article{MZM_2013_93_2_a12,
     author = {He-Jun Sun},
     title = {Inequalities for {Lower-Order} {Eigenvalues} of a {Fourth-Order} {Elliptic} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {286--294},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a12/}
}
TY  - JOUR
AU  - He-Jun Sun
TI  - Inequalities for Lower-Order Eigenvalues of a Fourth-Order Elliptic Operator
JO  - Matematičeskie zametki
PY  - 2013
SP  - 286
EP  - 294
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a12/
LA  - ru
ID  - MZM_2013_93_2_a12
ER  - 
%0 Journal Article
%A He-Jun Sun
%T Inequalities for Lower-Order Eigenvalues of a Fourth-Order Elliptic Operator
%J Matematičeskie zametki
%D 2013
%P 286-294
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a12/
%G ru
%F MZM_2013_93_2_a12
He-Jun Sun. Inequalities for Lower-Order Eigenvalues of a Fourth-Order Elliptic Operator. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 286-294. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a12/

[1] L. E. Payne, G. Pólya, H. F. Weinberger, “On the ratio of consecutive eigenvalues”, J. Math. and Phys., 35:5 (1956), 289–298 | MR | Zbl

[2] M. S. Ashbaugh, R. D. Benguria, “Proof of the Payne–Pólya–Weinberger conjecture”, Bull. Amer. Math. Soc. (N.S.), 25:1 (1991), 19–29 | DOI | MR | Zbl

[3] M. S. Ashbaugh, R. D. Benguria, “A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions”, Ann. of Math. (2), 135:3 (1992), 601–628 | DOI | MR | Zbl

[4] M. S. Ashbaugh, R. D. Benguria, “More bounds on eigenvalue ratios for Dirichlet Laplacians in $n$ dimension”, SIAM J. Math. Anal., 24:6 (1993), 1622–1651 | DOI | MR | Zbl

[5] H. Sun, Q.-M. Cheng, H. Yang, “Lower order eigenvalues of Dirichlet Laplacian”, Manuscripta Math., 125:2 (2008), 139–156 | DOI | MR | Zbl

[6] D. Chen, Q.-M. Cheng, “Extrinsic estimates for eigenvalues of the Laplace operator”, J. Math. Soc. Japan, 60:2 (2008), 325–339 | DOI | MR | Zbl

[7] M. S. Ashbaugh, “Isoperimetric and universal inequalities for eigenvalues”, Spectral Theory and Geometry (Edinburgh, 1998), London Math. Soc. Lecture Notes, 273, Cambridge Univ. Press, Cambridge, 1999, 95–139 | MR | Zbl

[8] Q.-M. Cheng, T. Ichikawa, S. Mametsuka, “Inequalities for eigenvalues of Laplacian with any order”, Commun. Contemp. Math., 11:4 (2009), 639–655 | DOI | MR | Zbl

[9] Q.-M. Cheng, G. Huang, G. Wei, “Estimates for lower order eigenvalues of a clamped plate problem”, Calc. Var. Partial Differential Equations, 38:3-4 (2010), 409–416 | DOI | MR | Zbl

[10] E. B. Davies, “Uniformly elliptic operators with measurable coefficients”, J. Funct. Anal., 132:1 (1995), 141–169 | DOI | MR | Zbl

[11] A. Henrot, Extremun Problems for Eigenvalues of Elliptic Operators, Front. Math., Birkhäuser Verlag, Basel, 2006 | MR | Zbl

[12] S. M. Hook, “Domain-independent upper bounds for eigenvalues of elliptic operator”, Trans. Amer. Math. Soc., 318:2 (1990), 615–642 | DOI | MR | Zbl

[13] C. Qian, Z. Chen, “Estimates of eigenvalues for uniformly elliptic operator of second order”, Acta Math. Appl. Sinica (English Ser.), 10:4 (1994), 349–355 | DOI | MR | Zbl

[14] H. J. Sun, “Yang-type inequalities for weighted eigenvalues of a second order uniformly elliptic operator with a nonnegative potential”, Proc. Amer. Math. Soc., 138:8 (2010), 2827–2837 | DOI | MR | Zbl