Generic Mixing Transformations Are Rank~$1$
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 163-171

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2007, S. V. Tikhonov introduced a complete metric on the space of mixing transformations. This metric generates a topology called the leash topology. Tikhonov posed the following problem: what conditions should be satisfied by a mixing transformation $T$ for its conjugacy class to be dense in the space of mixing transformations equipped with the leash topology. We show the conjugacy class to be dense for every mixing transformation $T$. As a corollary, we find that a generic mixing transformation is rank $1$.
Keywords: mixing transformation, probability space, Tikhonov metric, leash topology.
Mots-clés : conjugacy class
@article{MZM_2013_93_2_a0,
     author = {A. I. Bashtanov},
     title = {Generic {Mixing} {Transformations} {Are} {Rank~}$1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--171},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a0/}
}
TY  - JOUR
AU  - A. I. Bashtanov
TI  - Generic Mixing Transformations Are Rank~$1$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 163
EP  - 171
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a0/
LA  - ru
ID  - MZM_2013_93_2_a0
ER  - 
%0 Journal Article
%A A. I. Bashtanov
%T Generic Mixing Transformations Are Rank~$1$
%J Matematičeskie zametki
%D 2013
%P 163-171
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a0/
%G ru
%F MZM_2013_93_2_a0
A. I. Bashtanov. Generic Mixing Transformations Are Rank~$1$. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 163-171. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a0/