Generic Mixing Transformations Are Rank~$1$
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 163-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2007, S. V. Tikhonov introduced a complete metric on the space of mixing transformations. This metric generates a topology called the leash topology. Tikhonov posed the following problem: what conditions should be satisfied by a mixing transformation $T$ for its conjugacy class to be dense in the space of mixing transformations equipped with the leash topology. We show the conjugacy class to be dense for every mixing transformation $T$. As a corollary, we find that a generic mixing transformation is rank $1$.
Keywords: mixing transformation, probability space, Tikhonov metric, leash topology.
Mots-clés : conjugacy class
@article{MZM_2013_93_2_a0,
     author = {A. I. Bashtanov},
     title = {Generic {Mixing} {Transformations} {Are} {Rank~}$1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--171},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a0/}
}
TY  - JOUR
AU  - A. I. Bashtanov
TI  - Generic Mixing Transformations Are Rank~$1$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 163
EP  - 171
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a0/
LA  - ru
ID  - MZM_2013_93_2_a0
ER  - 
%0 Journal Article
%A A. I. Bashtanov
%T Generic Mixing Transformations Are Rank~$1$
%J Matematičeskie zametki
%D 2013
%P 163-171
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a0/
%G ru
%F MZM_2013_93_2_a0
A. I. Bashtanov. Generic Mixing Transformations Are Rank~$1$. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 163-171. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a0/

[1] S. V. Tikhonov, “Polnaya metrika na mnozhestve peremeshivayuschikh preobrazovanii”, UMN, 62:1 (2007), 209–210 | DOI | MR | Zbl

[2] S. V. Tikhonov, “Polnaya metrika na mnozhestve peremeshivayuschikh preobrazovanii”, Matem. sb., 198:4 (2007), 135–158 | DOI | MR | Zbl

[3] A. I. Bashtanov, “Svoistvo pochti nezavisimosti obrazov dlya ergodicheskikh preobrazovanii bez chastichnoi zhestkosti”, Differentsialnye uravneniya i topologiya. II, Sbornik statei. K 100-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, Tr. MIAN, 271, MAIK, M., 2010, 29–39 | MR

[4] V. V. Ryzhikov, “Poparnaya $\varepsilon$-nezavisimost mnozhestv $T^iA$ dlya peremeshivayuschego preobrazovaniya $T$”, Funkts. analiz i ego pril., 43:2 (2009), 88–91 | DOI | MR

[5] S. V. Tikhonov, “Peremeshivayuschie preobrazovaniya s odnorodnym spektrom”, Matem. sb., 202:8 (2011), 139–160 | DOI | MR

[6] D. S. Ornstein, “On the root problem in ergodic theory”, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Vol. II. Probability theory, Univ. California Press, Berkeley, CA, 1972, 347–356 | MR | Zbl

[7] V. V. Ryzhikov, “Peremeshivanie, rang i minimalnoe samoprisoedinenie deistvii s invariantnoi meroi”, Matem. sb., 183:3 (1992), 133–160 | MR | Zbl

[8] J. L. King, “Joinings-rank and the structure of finite rank mixing transformation”, J. Analyse Math., 51 (1988), 182–227 | DOI | MR | Zbl

[9] S. A. Kalikow, “Twofold mixing implies threefold mixing for rank one transformations”, Ergodic Theory Dynam. Systems, 4:2 (1984), 237–259 | DOI | MR | Zbl

[10] A. M. Stepin, A. M. Eremenko, “Needinstvennost vklyucheniya v potok i obshirnost tsentralizatora dlya tipichnogo sokhranyayuschego meru preobrazovaniya”, Matem. sb., 195:12 (2004), 95–108 | DOI | MR | Zbl

[11] J. L. F. King, “The generic transformation has roots of all orders”, Colloq. Math., 84-85, Part 2 (2000), 521–547 | MR | Zbl

[12] O. N. Ageev, “O tipichnosti nekotorykh neasimptoticheskikh dinamicheskikh svoistv”, UMN, 58:1 (2003), 177–178 | DOI | MR | Zbl

[13] T. de la Rue, J. de Sam Lazaro, “Une transformation générique peut être insérée dans un flot”, Ann. Inst. H. Poincaré Probab. Statist., 39:1 (2003), 121–134 | DOI | MR | Zbl

[14] O. N. Ageev, “Tipichnyi avtomorfizm prostranstva Lebega sopryazhen s $G$-rasshireniem dlya lyuboi konechnoi abelevoi gruppy $G$”, DAN, 374:4 (2000), 439–442 | MR | Zbl