Representation of a Multiple Integral of Special Form by a Series
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 96-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multiple integrals generalizing the iterated kernels of linear integral equations are expressed by a series each of whose terms is proportional to the product of two orthogonal functions in the case of a similar representation of the kernel. Besides integral equations, these integrals have applications in the theory of Markov processes. The results obtained are illustrated by several examples.
Keywords: multiple integral, linear integral equation, iterated kernel, Markov process, Kolmogorov–Chapman equation, orthogonal function.
@article{MZM_2013_93_1_a8,
     author = {R. N. Miroshin},
     title = {Representation of a {Multiple} {Integral} of {Special} {Form} by a {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {96--103},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a8/}
}
TY  - JOUR
AU  - R. N. Miroshin
TI  - Representation of a Multiple Integral of Special Form by a Series
JO  - Matematičeskie zametki
PY  - 2013
SP  - 96
EP  - 103
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a8/
LA  - ru
ID  - MZM_2013_93_1_a8
ER  - 
%0 Journal Article
%A R. N. Miroshin
%T Representation of a Multiple Integral of Special Form by a Series
%J Matematičeskie zametki
%D 2013
%P 96-103
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a8/
%G ru
%F MZM_2013_93_1_a8
R. N. Miroshin. Representation of a Multiple Integral of Special Form by a Series. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 96-103. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a8/

[1] Veroyatnost i matematicheskaya statistika. Entsiklopedicheskii slovar, Bolshaya Rossiiskaya entsiklopediya, M., 2003

[2] R. N. Miroshin, Peresecheniya krivykh gaussovskimi protsessami, Izd-vo Leningrad. un-ta, L., 1981 | MR | Zbl

[3] R. N. Miroshin, “Markovskie i vozvratnye statsionarnye gaussovskie protsessy vtorogo poryadka”, TVP, 24:4 (1979), 847–853 | MR | Zbl

[4] R. N. Miroshin, “Ob odnom klasse mnogokratnykh integralov”, Matem. zametki, 73:3 (2003), 390–401 | DOI | MR | Zbl

[5] R. N. Miroshin, “Skhodimost ryadov Longe-Khigginsa dlya statsionarnykh gaussovskikh markovskikh protsessov pervogo poryadka”, TVP, 26:1 (1981), 101–120 | MR | Zbl

[6] R. N. Miroshin, “O mnogokratnykh integralakh spetsialnogo vida”, Matem. zametki, 82:3 (2007), 401–410 | DOI | MR | Zbl

[7] R. N. Miroshin, “O nekotorykh resheniyakh integralnogo uravneniya Kolmogorova–Chepmena”, Vestn. S.-Peterb. un-ta. Ser. 1. Matem., mekh., astron., 2007, no. 4, 22–29 | MR | Zbl

[8] S. N. Bernshtein, “O zavisimostyakh mezhdu sluchainymi velichinami”, Sobranie sochinenii. T. 4. Teoriya veroyatnostei. Matematicheskaya statistika (1911–1946), Nauka, M., 1964, 235–255 | MR

[9] S. O. Sarmanov, “Issledovanie statsionarnykh markovskikh protsessov metodom razlozheniya po sobstvennym funktsiyam”, Sbornik statei. Posvyaschaetsya akademiku Mikhailu Alekseevichu Lavrentevu k ego shestidesyatiletiyu, Tr. MIAN SSSR, 60, Izd-vo AN SSSR, M., 1961, 238–261 | MR | Zbl

[10] R. N. Miroshin, “O reshenii integralnogo uravneniya Kolmogorova–Chepmena v vide ryada”, Vestn. S.-Peterb. un-ta. Ser. 1. Matem., mekh., astron., 2009, no. 2, 72–76 | MR | Zbl

[11] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR | Zbl

[12] R. N. Miroshin, Sluchainye protsessy i polya, NII Khimii SPbGU, SPb., 2003

[13] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii. T. 2. Preobrazovaniya Besselya. Integraly ot spetsialnykh funktsii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1970 | MR | Zbl

[14] P.-A. Lee, “Markov processes and a multiple generating function of product for generation function of product for generalized Laguerre polynomials”, J. Phys. A: Math. Gen., 30:11 (1997), L373–L377 | MR | Zbl

[15] A. V. Niukkanen, “Novyi metod v teorii gipergeometricheskikh ryadov i spetsialnykh funktsii matematicheskoi fiziki”, UMN, 43:3 (1988), 191–192 | MR | Zbl