On the Blow-Up of the Solution of an Equation Related to the Hamilton--Jacobi Equation
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 81-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new model three-dimensional third-order equation of Hamilton–Jacobi type is derived. For this equation, the initial boundary-value problem in a bounded domain with smooth boundary is studied and local solvability in the strong generalized sense is proved; in addition, sufficient conditions for the blow-up in finite time and sufficient conditions for global (in time) solvability are obtained.
Keywords: third-order equation of Hamilton–Jacobi type, blow-up of solutions, electric potential in a crystalline semiconductor, Dirichlet problem, Galerkin approximation, Browder–Minty theorem, Lipschitz-continuous operator.
@article{MZM_2013_93_1_a7,
     author = {M. O. Korpusov},
     title = {On the {Blow-Up} of the {Solution} of an {Equation} {Related} to the {Hamilton--Jacobi} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {81--95},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a7/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - On the Blow-Up of the Solution of an Equation Related to the Hamilton--Jacobi Equation
JO  - Matematičeskie zametki
PY  - 2013
SP  - 81
EP  - 95
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a7/
LA  - ru
ID  - MZM_2013_93_1_a7
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T On the Blow-Up of the Solution of an Equation Related to the Hamilton--Jacobi Equation
%J Matematičeskie zametki
%D 2013
%P 81-95
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a7/
%G ru
%F MZM_2013_93_1_a7
M. O. Korpusov. On the Blow-Up of the Solution of an Equation Related to the Hamilton--Jacobi Equation. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 81-95. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a7/

[1] V. A. Galaktionov, S. I. Pokhozhaev, “Uravneniya nelineinoi dispersii tretego poryadka: udarnye volny, volny razrezheniya i razrusheniya”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1819–1846 | MR | Zbl

[2] S. I. Pokhozhaev, “O razrushenii reshenii uravneniya Kuramoto–Sivashinskogo”, Matem. sb., 199:9 (2008), 97–106 | DOI | MR | Zbl

[3] V. A. Galaktionov, E. Mitidieri, S. I. Pohozaev, “On global solutions and blow-up for Kuramoto–Sivashinsky-type models, and well-posed Burnett equations”, Nonlinear Anal., Theory Methods Appl., 70:8 (2009), 2930–2952 | DOI | MR | Zbl

[4] S. I. Pohozaev, “Critical nonlinearities in partial differential equations”, Milan J. Math., 77:1 (2009), 127–150 | DOI | MR | Zbl

[5] E. L. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[6] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR | Zbl

[7] M. Chipot, F. B. Weissler, “Some blowup results for a nonlinear parabolic equation with a gradient term”, SIAM J. Math. Anal, 20:4 (1989), 886–907 | DOI | MR | Zbl

[8] M. Fila, “Remarks on blow up for a nonlinear parabolic equation with a gradient term”, Proc. Amer. Math. Soc., 111:3 (1991), 795–801 | DOI | MR | Zbl

[9] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Math., 1884, Springer, New York, 2006 | DOI | MR | Zbl

[10] P. Souplet, F. B. Weissler, “Poincaré's inequality and global solutions of a nonlinear parabolic equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16:3 (1999), 335–371 | DOI | MR | Zbl

[11] F. G. Bass, V. S. Bochkov, Yu. S. Gurevich, Elektrony i fonony v ogranichennykh poluprovodnikakh, Nauka, M., 1984

[12] V. L. Bonch-Bruevich V, S. G. Kalashnikov, Fizika poluprovodnikov, Nauka, M., 1990

[13] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 8. Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[14] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[15] M. O. Korpusov, Razrushenie v neklassicheskikh nelokalnykh uravneniyakh, URSS, M., 2011

[16] G. N. Vatson, Teoriya Besselevykh funktsii, Ch. 1, IL, M., 1949 | MR | Zbl