On Bohl's Argument Theorem
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 72-80

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Bohl argument theorem of a conditionally periodic function is generalized. Conditionally periodic motions on a torus are replaced by the solutions of a nonlinear system of differential equations with invariant measure. Cases in which this system is assumed ergodic or strictly ergodic are considered.
Keywords: Bohl's argument theorem, conditionally periodic motion on the $n$-dimensional torus, (strictly) ergodic system of differential equations, uniformly distributed function, Birkhoff–Khinchine ergodic theorem.
@article{MZM_2013_93_1_a6,
     author = {V. V. Kozlov},
     title = {On {Bohl's} {Argument} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {72--80},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a6/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - On Bohl's Argument Theorem
JO  - Matematičeskie zametki
PY  - 2013
SP  - 72
EP  - 80
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a6/
LA  - ru
ID  - MZM_2013_93_1_a6
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T On Bohl's Argument Theorem
%J Matematičeskie zametki
%D 2013
%P 72-80
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a6/
%G ru
%F MZM_2013_93_1_a6
V. V. Kozlov. On Bohl's Argument Theorem. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 72-80. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a6/