On Bohl's Argument Theorem
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 72-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Bohl argument theorem of a conditionally periodic function is generalized. Conditionally periodic motions on a torus are replaced by the solutions of a nonlinear system of differential equations with invariant measure. Cases in which this system is assumed ergodic or strictly ergodic are considered.
Keywords: Bohl's argument theorem, conditionally periodic motion on the $n$-dimensional torus, (strictly) ergodic system of differential equations, uniformly distributed function, Birkhoff–Khinchine ergodic theorem.
@article{MZM_2013_93_1_a6,
     author = {V. V. Kozlov},
     title = {On {Bohl's} {Argument} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {72--80},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a6/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - On Bohl's Argument Theorem
JO  - Matematičeskie zametki
PY  - 2013
SP  - 72
EP  - 80
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a6/
LA  - ru
ID  - MZM_2013_93_1_a6
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T On Bohl's Argument Theorem
%J Matematičeskie zametki
%D 2013
%P 72-80
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a6/
%G ru
%F MZM_2013_93_1_a6
V. V. Kozlov. On Bohl's Argument Theorem. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 72-80. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a6/

[1] P. Bohl, “Über eine Differentialgleichung der Störungstheorie”, J. Reine Angew. Math., 131 (1906), 268–321 | Zbl

[2] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953 | MR | Zbl

[3] J. Moser, “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120:2 (1965), 286–294 | DOI | MR | Zbl

[4] N. Kryloff, N. Bogoliouboff, “La theorie génerale de la mesure dans son application à l'etude des systems dynamiques de la mécanique non-linéare”, Ann. of Math. (2), 38:1 (1937), 65–113 | DOI | MR | Zbl

[5] J. Moser, “A rapidly convergent iteration method and non-linear differential equations. II”, Ann. Scuola Norm. Sup. Pisa (3), 20:3 (1966), 499–535 | MR | Zbl

[6] A. N. Kolmogorov, “O dinamicheskikh sistemakh s integralnym invariantom na tore”, DAN SSSR, 93:5 (1953), 763–766 | MR | Zbl

[7] A. Puankare, Teoriya veroyatnostei, RKhD, Izhevsk, 1999 | Zbl

[8] V. V. Kozlov, “Dinamicheskie sistemy na tore s mnogoznachnymi integralami”, Dinamicheskie sistemy i optimizatsiya, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Tr. MIAN, 256, Nauka, M., 2007, 201–218 | MR | Zbl

[9] G. Halász, “Remarks on the remainder in Birkhoff's ergodic theorem”, Acta Math. Acad. Sci. Hungar., 28:3–4 (1976), 389–395 | DOI | MR | Zbl

[10] V. V. Kozlov, “Vesovye srednie, strogaya ergodichnost i ravnomernoe raspredelenie”, Matem. zametki, 78:3 (2005), 358–367 | DOI | MR | Zbl

[11] S. A. Chaplygin, “K' teorii dvizheniya negolonomnykh' sistem'. Teorema o privodyaschem' mnozhitelѣ”, Matem. sb., 28:2 (1912), 303–314 | Zbl