The Equivalence between the Schur Order and the Stochastic Orders Generated by the Scheme of Allocation of Particles into Cells
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 56-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1982, it was proved that the Schur partial-order relation on the set of distributions on $\{1,2,\dots\}$ is equivalent to the order relation generated the number of nonempty cell distributions by the scheme of independent allocation of particles into cells. Here it is shown that the same partial-order relation is generated by distributions of numbers of cells occupied by at least $r$ particles for any $r\ge 2$.
Keywords: allocation of particles into cells, Schur partial-order relation, stochastic order
Mots-clés : multinomial distribution.
@article{MZM_2013_93_1_a4,
     author = {A. M. Zubkov and T. A. Tatarenko},
     title = {The {Equivalence} between the {Schur} {Order} and the {Stochastic} {Orders} {Generated} by the {Scheme} of {Allocation} of {Particles} into {Cells}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {56--62},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a4/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - T. A. Tatarenko
TI  - The Equivalence between the Schur Order and the Stochastic Orders Generated by the Scheme of Allocation of Particles into Cells
JO  - Matematičeskie zametki
PY  - 2013
SP  - 56
EP  - 62
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a4/
LA  - ru
ID  - MZM_2013_93_1_a4
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A T. A. Tatarenko
%T The Equivalence between the Schur Order and the Stochastic Orders Generated by the Scheme of Allocation of Particles into Cells
%J Matematičeskie zametki
%D 2013
%P 56-62
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a4/
%G ru
%F MZM_2013_93_1_a4
A. M. Zubkov; T. A. Tatarenko. The Equivalence between the Schur Order and the Stochastic Orders Generated by the Scheme of Allocation of Particles into Cells. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 56-62. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a4/

[1] A. M. Zubkov, N. N. Popov, “Otnoshenie chastichnogo poryadka, porozhdennoe raspredeleniyami chisla zanyatykh yacheek”, Matem. zametki, 32:1 (1982), 97–102 | MR | Zbl

[2] N. L. Johnson, S. Kotz, Urn Models and their Application. An Approach to Modern Discrete Probability Theory, Wiley Ser. Probab. Math. Stat., J. Wiley Sons, New York, 1977 | MR | Zbl

[3] V. F. Kolchin, B. A. Sevastyanov, V. P. Chistyakov, Sluchainye razmescheniya, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1976 | MR | Zbl

[4] A. Marshall, I. Olkin, Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983 | MR | Zbl

[5] R. R. Gilmanshin, A. M. Zubkov, N. A. Kolokolnikova, “Otsenki ekstremalnykh znachenii srednego chisla yacheek, soderzhaschikh zadannoe chislo chastits”, Diskret. matem., 19:1 (2007), 11–16 | DOI | MR | Zbl