Operator-Difference Schemes for a Class of Systems of Evolution Equations
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 29-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a special system of evolution equations of first order, discrete time approximations for the approximate solution of the Cauchy problem are considered. Such problems arise after the spatial approximation in the Schrödinger equation and the subsequent separation of the imaginary and real parts and in nonstationary problems of acoustics and electrodynamics. Unconditionally stable two-time-level operator-difference weighted schemes are constructed. The second class of difference schemes is based on the formal passage to explicit operator-difference schemes for evolution equations of second order when explicit-implicit approximation is used for isolated equations of the system. The regularization of such schemes in order to obtain unconditionally stable operator-difference schemes is discussed. Splitting schemes involving the solution of simplest problems at each time step are constructed.
Mots-clés : evolution equation, spatial approximation
Keywords: boundary-value problem, discrete time approximation, Cauchy problem, two-time-level operator-difference weighted scheme, splitting scheme, skew-symmetric operator.
@article{MZM_2013_93_1_a2,
     author = {P. N. Vabishchevich},
     title = {Operator-Difference {Schemes} for a {Class} of {Systems} of {Evolution} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {29--44},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a2/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - Operator-Difference Schemes for a Class of Systems of Evolution Equations
JO  - Matematičeskie zametki
PY  - 2013
SP  - 29
EP  - 44
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a2/
LA  - ru
ID  - MZM_2013_93_1_a2
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T Operator-Difference Schemes for a Class of Systems of Evolution Equations
%J Matematičeskie zametki
%D 2013
%P 29-44
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a2/
%G ru
%F MZM_2013_93_1_a2
P. N. Vabishchevich. Operator-Difference Schemes for a Class of Systems of Evolution Equations. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 29-44. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a2/

[1] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983 | MR | Zbl

[2] P. Knabner, L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Texts Appl. Math., 44, Springer-Verlag, New York, 2003 | MR | Zbl

[3] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Texts Appl. Math., 37, Springer-Verlag, Berlin, 2007 | MR | Zbl

[4] Ch. Grossmann, H.-G. Roos, M. Stynes, Numerical Treatment of Partial Differential Equations, Universitext, Springer-Verlag, Berlin, 2007 | MR | Zbl

[5] G. I. Marchuk, Metody rasschepleniya, Nauka, M., 1988 | MR | Zbl

[6] A. A. Samarskii, P. N. Vabischevich, Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999 | MR | Zbl

[7] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[8] F. J. Lisbona, P. N. Vabishchevich, “Operator-splitting schemes for solving elasticity problems”, Comput. Methods Appl. Math., 1:2 (2001), 188–198 | MR | Zbl

[9] P. N. Vabischevich, A. A. Samarskii, “Reshenie zadach dinamiki neszhimaemoi zhidkosti s peremennoi vyazkostyu”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1813–1822 | MR | Zbl

[10] A. Samarskii, P. Vabishchevich, “Additive schemes for systems of time-dependent equations of mathematical physics”, Numerical Methods and Applications, Lecture Notes in Comput. Sci., 2542, Springer-Verlag, Berlin, 2003, 48–60 | DOI | MR | Zbl

[11] P. N. Vabischevich, “Raznostnye skhemy dlya resheniya nestatsionarnykh vektornykh zadach”, Differents. uravneniya, 40:7 (2004), 936–943 | MR | Zbl

[12] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR | Zbl

[13] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 6. Gidrodinamika, Nauka, M., 1986 | MR

[14] A. A. Samarskii, A. V. Koldoba, Yu. A. Poveschenko, V. F. Tishkin, A. P. Favorskii, Raznostnye skhemy na neregulyarnykh setkakh, Kriterii, Minsk, 1996

[15] P. N. Vabishchevich, “Finite-difference approximation of mathematical physics problems on irregular grids”, Comput. Methods Appl. Math., 5:3 (2005), 294–330 | MR | Zbl

[16] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 8. Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[17] A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, MA, 2000 | MR | Zbl

[18] A. N. Konovalov, “Sopryazhenno-faktorizovannye modeli v zadachakh matematicheskoi fiziki”, Sib. zhurn. vychisl. matem., 1:1 (1998), 25–58 | MR | Zbl

[19] A. N. Konovalov, “Dinamicheskaya zadacha teorii uprugosti v postanovke “skorosti-napryazheniya””, Differents. uravneniya, 35:2 (1999), 238–248 | MR | Zbl

[20] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math., 15, Springer-Verlag, New York, 1991 | MR | Zbl

[21] A. A. Samarskii, Yu. P. Popov, Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1992 | MR | Zbl

[22] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, URSS, M., 2004 | MR

[23] A. A. Samarskii, “O regulyarizatsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 62–93 | MR | Zbl

[24] V. M. Kovenya, N. N. Yanenko, Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl