Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_1_a2, author = {P. N. Vabishchevich}, title = {Operator-Difference {Schemes} for a {Class} of {Systems} of {Evolution} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {29--44}, publisher = {mathdoc}, volume = {93}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a2/} }
P. N. Vabishchevich. Operator-Difference Schemes for a Class of Systems of Evolution Equations. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 29-44. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a2/
[1] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983 | MR | Zbl
[2] P. Knabner, L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Texts Appl. Math., 44, Springer-Verlag, New York, 2003 | MR | Zbl
[3] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Texts Appl. Math., 37, Springer-Verlag, Berlin, 2007 | MR | Zbl
[4] Ch. Grossmann, H.-G. Roos, M. Stynes, Numerical Treatment of Partial Differential Equations, Universitext, Springer-Verlag, Berlin, 2007 | MR | Zbl
[5] G. I. Marchuk, Metody rasschepleniya, Nauka, M., 1988 | MR | Zbl
[6] A. A. Samarskii, P. N. Vabischevich, Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999 | MR | Zbl
[7] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl
[8] F. J. Lisbona, P. N. Vabishchevich, “Operator-splitting schemes for solving elasticity problems”, Comput. Methods Appl. Math., 1:2 (2001), 188–198 | MR | Zbl
[9] P. N. Vabischevich, A. A. Samarskii, “Reshenie zadach dinamiki neszhimaemoi zhidkosti s peremennoi vyazkostyu”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1813–1822 | MR | Zbl
[10] A. Samarskii, P. Vabishchevich, “Additive schemes for systems of time-dependent equations of mathematical physics”, Numerical Methods and Applications, Lecture Notes in Comput. Sci., 2542, Springer-Verlag, Berlin, 2003, 48–60 | DOI | MR | Zbl
[11] P. N. Vabischevich, “Raznostnye skhemy dlya resheniya nestatsionarnykh vektornykh zadach”, Differents. uravneniya, 40:7 (2004), 936–943 | MR | Zbl
[12] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR | Zbl
[13] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 6. Gidrodinamika, Nauka, M., 1986 | MR
[14] A. A. Samarskii, A. V. Koldoba, Yu. A. Poveschenko, V. F. Tishkin, A. P. Favorskii, Raznostnye skhemy na neregulyarnykh setkakh, Kriterii, Minsk, 1996
[15] P. N. Vabishchevich, “Finite-difference approximation of mathematical physics problems on irregular grids”, Comput. Methods Appl. Math., 5:3 (2005), 294–330 | MR | Zbl
[16] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 8. Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR
[17] A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, MA, 2000 | MR | Zbl
[18] A. N. Konovalov, “Sopryazhenno-faktorizovannye modeli v zadachakh matematicheskoi fiziki”, Sib. zhurn. vychisl. matem., 1:1 (1998), 25–58 | MR | Zbl
[19] A. N. Konovalov, “Dinamicheskaya zadacha teorii uprugosti v postanovke “skorosti-napryazheniya””, Differents. uravneniya, 35:2 (1999), 238–248 | MR | Zbl
[20] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math., 15, Springer-Verlag, New York, 1991 | MR | Zbl
[21] A. A. Samarskii, Yu. P. Popov, Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1992 | MR | Zbl
[22] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, URSS, M., 2004 | MR
[23] A. A. Samarskii, “O regulyarizatsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 62–93 | MR | Zbl
[24] V. M. Kovenya, N. N. Yanenko, Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl