Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_6_a8, author = {V. A. Krasnov}, title = {Real {Four-Dimensional} $M${-Triquadrics}}, journal = {Matemati\v{c}eskie zametki}, pages = {884--892}, publisher = {mathdoc}, volume = {92}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a8/} }
V. A. Krasnov. Real Four-Dimensional $M$-Triquadrics. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 884-892. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a8/
[1] A. Degtyarev, I. Itenberg, V. Kharlamov, “On the number of components of a complete intersection of real quadrics”, Perspectives in Analysis, Geometry, and Topology, Progr. Math., 296, Birkhäuser-Verlag, New York, 2012, 81–107, arXiv: 0806.4077v2 | MR | Zbl
[2] V. A. Krasnov, “Maksimalnye peresecheniya trekh veschestvennykh kvadrik”, Izv. RAN. Ser. matem., 75:3 (2011), 127–146 | DOI | MR | Zbl
[3] S. Yu. Orevkov, “Classification of flexible $M$-curves of degree $8$ up to isotopy”, Geom. Funct. Anal., 12:4 (2002) | MR | Zbl
[4] A. A. Agrachev, “Gomologii peresechenii veschestvennykh kvadrik”, DAN SSSR, 299:5 (1988), 1033–1036 | MR | Zbl