Real Four-Dimensional $M$-Triquadrics
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 884-892.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonsingular maximal intersections of three real six-dimensional quadrics are considered. Such algebraic varieties are referred to for brevity as real four-dimensional $M$-triquadrics. The dimensions of their cohomology spaces with coefficients in the field of two elements are calculated.
Mots-clés : six-dimensional quadric, triquadric, index orientation
Keywords: spectral curve, spectral bundle, index function, complete involution, cohomology group, Stiefel–Whitney class.
@article{MZM_2012_92_6_a8,
     author = {V. A. Krasnov},
     title = {Real {Four-Dimensional} $M${-Triquadrics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {884--892},
     publisher = {mathdoc},
     volume = {92},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a8/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real Four-Dimensional $M$-Triquadrics
JO  - Matematičeskie zametki
PY  - 2012
SP  - 884
EP  - 892
VL  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a8/
LA  - ru
ID  - MZM_2012_92_6_a8
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real Four-Dimensional $M$-Triquadrics
%J Matematičeskie zametki
%D 2012
%P 884-892
%V 92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a8/
%G ru
%F MZM_2012_92_6_a8
V. A. Krasnov. Real Four-Dimensional $M$-Triquadrics. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 884-892. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a8/

[1] A. Degtyarev, I. Itenberg, V. Kharlamov, “On the number of components of a complete intersection of real quadrics”, Perspectives in Analysis, Geometry, and Topology, Progr. Math., 296, Birkhäuser-Verlag, New York, 2012, 81–107, arXiv: 0806.4077v2 | MR | Zbl

[2] V. A. Krasnov, “Maksimalnye peresecheniya trekh veschestvennykh kvadrik”, Izv. RAN. Ser. matem., 75:3 (2011), 127–146 | DOI | MR | Zbl

[3] S. Yu. Orevkov, “Classification of flexible $M$-curves of degree $8$ up to isotopy”, Geom. Funct. Anal., 12:4 (2002) | MR | Zbl

[4] A. A. Agrachev, “Gomologii peresechenii veschestvennykh kvadrik”, DAN SSSR, 299:5 (1988), 1033–1036 | MR | Zbl