Real Four-Dimensional $M$-Triquadrics
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 884-892
Cet article a éte moissonné depuis la source Math-Net.Ru
Nonsingular maximal intersections of three real six-dimensional quadrics are considered. Such algebraic varieties are referred to for brevity as real four-dimensional $M$-triquadrics. The dimensions of their cohomology spaces with coefficients in the field of two elements are calculated.
Mots-clés :
six-dimensional quadric, triquadric, index orientation
Keywords: spectral curve, spectral bundle, index function, complete involution, cohomology group, Stiefel–Whitney class.
Keywords: spectral curve, spectral bundle, index function, complete involution, cohomology group, Stiefel–Whitney class.
@article{MZM_2012_92_6_a8,
author = {V. A. Krasnov},
title = {Real {Four-Dimensional} $M${-Triquadrics}},
journal = {Matemati\v{c}eskie zametki},
pages = {884--892},
year = {2012},
volume = {92},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a8/}
}
V. A. Krasnov. Real Four-Dimensional $M$-Triquadrics. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 884-892. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a8/
[1] A. Degtyarev, I. Itenberg, V. Kharlamov, “On the number of components of a complete intersection of real quadrics”, Perspectives in Analysis, Geometry, and Topology, Progr. Math., 296, Birkhäuser-Verlag, New York, 2012, 81–107, arXiv: 0806.4077v2 | MR | Zbl
[2] V. A. Krasnov, “Maksimalnye peresecheniya trekh veschestvennykh kvadrik”, Izv. RAN. Ser. matem., 75:3 (2011), 127–146 | DOI | MR | Zbl
[3] S. Yu. Orevkov, “Classification of flexible $M$-curves of degree $8$ up to isotopy”, Geom. Funct. Anal., 12:4 (2002) | MR | Zbl
[4] A. A. Agrachev, “Gomologii peresechenii veschestvennykh kvadrik”, DAN SSSR, 299:5 (1988), 1033–1036 | MR | Zbl