Effective Algorithms for Decomplexifying a Matrix by Unitary Similarities or Congruences
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 856-863.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is required to verify whether a given complex $n\times n$ matrix $A$ can be made real by a similarity or a congruence transformation. Algorithms for solving these two problems are proposed and justified under the additional assumption that $A$ is irreducible in the former case and $A_L=\overline AA$ is irreducible in the latter case. The irreducibility of a square complex matrix means that no unitary similarity transformation converts this matrix into a direct sum of smaller matrices. The proposed algorithms are effective in the sense that their implementation requires a finite number of arithmetic operations.
Keywords: unitary similarity, unitary congruence, irreducible matrix, consimilarity.
Mots-clés : polar decomposition
@article{MZM_2012_92_6_a5,
     author = {Kh. D. Ikramov},
     title = {Effective {Algorithms} for {Decomplexifying} a {Matrix} by {Unitary} {Similarities} or {Congruences}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {856--863},
     publisher = {mathdoc},
     volume = {92},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Effective Algorithms for Decomplexifying a Matrix by Unitary Similarities or Congruences
JO  - Matematičeskie zametki
PY  - 2012
SP  - 856
EP  - 863
VL  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a5/
LA  - ru
ID  - MZM_2012_92_6_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Effective Algorithms for Decomplexifying a Matrix by Unitary Similarities or Congruences
%J Matematičeskie zametki
%D 2012
%P 856-863
%V 92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a5/
%G ru
%F MZM_2012_92_6_a5
Kh. D. Ikramov. Effective Algorithms for Decomplexifying a Matrix by Unitary Similarities or Congruences. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 856-863. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a5/

[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl

[2] Kh. D. Ikramov, “O kompleksnykh matritsakh, unitarno podobnykh veschestvennym matritsam”, Matem. zametki, 87:6 (2010), 840–847 | DOI | MR

[3] Kh. D. Ikramov, “A note on complex matrices that are unitarily congruent to real matrices”, Linear Algebra Appl., 433:4 (2010), 838–842 | DOI | MR | Zbl

[4] C. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type I”, Pacific J. Math., 12 (1962), 1405–1416 | MR | Zbl

[5] Yu. A. Alpin, Kh. D. Ikramov, “Kriterii unitarnoi kongruentnosti matrits”, DAN, 437:1 (2011), 7–8 | MR | Zbl

[6] Kh. D. Ikramov, “O konechnom ratsionalnom kriterii neprivodimosti matrits”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem., kibernet., 2007:3, 16–18 | MR | Zbl

[7] Kh. D. Ikramov, “O konechnykh algoritmakh dlya proverki unitarnogo podobiya i unitarnoi kongruentnosti pary kompleksnykh matrits”, Dokl. RAN, 437:2 (2011), 151–153 | MR | Zbl

[8] A. George, Kh. Ikramov, “Is the polar decomposition finitely computable?”, SIAM J. Matrix Anal. Appl., 17:2 (1996), 348–354 ; Addendum, SIAM J. Matrix Anal. Appl., 18:1 (1997), 264 | DOI | MR | Zbl | DOI | MR | Zbl