The Gr\"otzsch and Teichm\"uller Extremal Problems on a Riemann Surface
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 834-843.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Grötzsch and Teichmüller well-known extremal problems for the moduli of plane doubly connected domains are extended to the case of domains on Riemann surfaces.
Keywords: Grötzsch ring, Teichmüller ring, Riemann surface, modulus of a doubly connected domain, condenser capacity.
Mots-clés : condenser
@article{MZM_2012_92_6_a3,
     author = {V. N. Dubinin},
     title = {The {Gr\"otzsch} and {Teichm\"uller} {Extremal} {Problems} on a {Riemann} {Surface}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {834--843},
     publisher = {mathdoc},
     volume = {92},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - The Gr\"otzsch and Teichm\"uller Extremal Problems on a Riemann Surface
JO  - Matematičeskie zametki
PY  - 2012
SP  - 834
EP  - 843
VL  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a3/
LA  - ru
ID  - MZM_2012_92_6_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T The Gr\"otzsch and Teichm\"uller Extremal Problems on a Riemann Surface
%J Matematičeskie zametki
%D 2012
%P 834-843
%V 92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a3/
%G ru
%F MZM_2012_92_6_a3
V. N. Dubinin. The Gr\"otzsch and Teichm\"uller Extremal Problems on a Riemann Surface. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 834-843. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a3/

[1] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962 | MR | Zbl

[2] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR | Zbl

[3] L. V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill Ser. in Higher Math., McGraw-Hill, New York, 1973 | MR | Zbl

[4] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[5] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968 | MR

[6] V. N. Dubinin, “Novaya versiya krugovoi simmetrizatsii s prilozheniyami k $p$-listnym funktsiyam”, Matem. sb., 203:7 (2012), 79–94 | DOI

[7] W. K. Hayman, Multivalent Functions, Cambridge Tracts in Math., 100, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl