Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_6_a2, author = {L. A. Beklaryan}, title = {Residual {Subsets} in the {Space} of {Finitely} {Generated} {Groups} of {Diffeomorphisms} of the {Circle}}, journal = {Matemati\v{c}eskie zametki}, pages = {825--833}, publisher = {mathdoc}, volume = {92}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a2/} }
TY - JOUR AU - L. A. Beklaryan TI - Residual Subsets in the Space of Finitely Generated Groups of Diffeomorphisms of the Circle JO - Matematičeskie zametki PY - 2012 SP - 825 EP - 833 VL - 92 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a2/ LA - ru ID - MZM_2012_92_6_a2 ER -
L. A. Beklaryan. Residual Subsets in the Space of Finitely Generated Groups of Diffeomorphisms of the Circle. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 825-833. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a2/
[1] L. A. Beklaryan, “Variatsionnaya zadacha s zapazdyvayuschim argumentom i ee svyaz s nekotoroi polugruppoi otobrazhenii otrezka v sebya”, DAN SSSR, 271:5 (1983), 1036–1040 | MR | Zbl
[2] L. A. Beklaryan, “Zadacha optimalnogo upravleniya dlya sistem s otklonyayuschimsya argumentom i ee svyaz s konechno-porozhdennoi gruppoi gomeomorfizmov $\mathbb R$, porozhdennoi funktsiyami otkloneniya argumenta”, DAN SSSR, 317:6 (1991), 1289–1294 | MR | Zbl
[3] L. A. Beklaryan, “About canonical types of the differential equations with deviating argument”, Funct. Differ. Equ., 2001, no. 1-2, 25–33 | MR | Zbl
[4] L. A. Beklaryan, “Gruppy gomeomorfizmov pryamoi i okruzhnosti. Topologicheskie kharakteristiki i metricheskie invarianty”, UMN, 59:4 (2004), 3–68 | DOI | MR | Zbl
[5] L. A. Beklaryan, Vvedenie v teoriyu funktsinalno-differentsialnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007
[6] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl