Residual Subsets in the Space of Finitely Generated Groups of Diffeomorphisms of the Circle
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 825-833.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finitely generated groups of diffeomorphisms of the circle are considered in different problems of geometry, wave theory, variational calculus, etc. In particular, the set of such groups contains groups freely acting on the orbits of almost each point of the circle. The present paper deals with the structure of the set of finitely generated groups of diffeomorphisms with a given number of generators and with the above property. It is shown that such a set contains a residual subset (i.e., contains the countable intersection of open everywhere dense subsets).
Keywords: diffeomorphisms of the line, diffeomorphisms of the circle, finitely generated group, residual set, mutually transversal diffeomorphisms.
@article{MZM_2012_92_6_a2,
     author = {L. A. Beklaryan},
     title = {Residual {Subsets} in the {Space} of {Finitely} {Generated} {Groups} of {Diffeomorphisms} of the {Circle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {825--833},
     publisher = {mathdoc},
     volume = {92},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a2/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - Residual Subsets in the Space of Finitely Generated Groups of Diffeomorphisms of the Circle
JO  - Matematičeskie zametki
PY  - 2012
SP  - 825
EP  - 833
VL  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a2/
LA  - ru
ID  - MZM_2012_92_6_a2
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T Residual Subsets in the Space of Finitely Generated Groups of Diffeomorphisms of the Circle
%J Matematičeskie zametki
%D 2012
%P 825-833
%V 92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a2/
%G ru
%F MZM_2012_92_6_a2
L. A. Beklaryan. Residual Subsets in the Space of Finitely Generated Groups of Diffeomorphisms of the Circle. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 825-833. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a2/

[1] L. A. Beklaryan, “Variatsionnaya zadacha s zapazdyvayuschim argumentom i ee svyaz s nekotoroi polugruppoi otobrazhenii otrezka v sebya”, DAN SSSR, 271:5 (1983), 1036–1040 | MR | Zbl

[2] L. A. Beklaryan, “Zadacha optimalnogo upravleniya dlya sistem s otklonyayuschimsya argumentom i ee svyaz s konechno-porozhdennoi gruppoi gomeomorfizmov $\mathbb R$, porozhdennoi funktsiyami otkloneniya argumenta”, DAN SSSR, 317:6 (1991), 1289–1294 | MR | Zbl

[3] L. A. Beklaryan, “About canonical types of the differential equations with deviating argument”, Funct. Differ. Equ., 2001, no. 1-2, 25–33 | MR | Zbl

[4] L. A. Beklaryan, “Gruppy gomeomorfizmov pryamoi i okruzhnosti. Topologicheskie kharakteristiki i metricheskie invarianty”, UMN, 59:4 (2004), 3–68 | DOI | MR | Zbl

[5] L. A. Beklaryan, Vvedenie v teoriyu funktsinalno-differentsialnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007

[6] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl