Elliptic Equation with a Singular Potential in a Domain with a Conic Point
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 928-938.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the behavior of the nonnegative solutions of the problem $$ -\Delta u=V(x)u,\qquad u|_{\partial\Omega}=\phi(x) $$ in a conical domain $\Omega \subset \mathbb{R}^n$, $n \ge 3$, where $0\le V(x) \in L_1(\Omega)$, $0\le \phi(x) \in L_1(\partial\Omega)$ and $\phi(x)$ is continuous on the boundary $\partial\Omega$. It is proved that there exists a constant $C_\star(n)=(n-2)^2/4$ such that if $V_0(x)=(c+\lambda_1)|x|^{-2}$, then, for $0\le c\le C_\star(n)$ and $V(x) \le V_0(x)$ in the domain $\Omega$, this problem has a nonnegative solution for any nonnegative boundary function $\phi(x) \in L_1(\partial\Omega)$; for $c>C_\star(n)$ and $V(x) \ge V_0(x)$ in $\Omega$, this problem has no nonnegative solutions if $\phi(x)>0$.
Mots-clés : elliptic equation
Keywords: singular potential, conic domain, conic point, Laplace operator, Beltrami operator, Dirichlet boundary condition, Cauchy's inequality, Hölder's inequality.
@article{MZM_2012_92_6_a12,
     author = {B. A. Khudaikuliev},
     title = {Elliptic {Equation} with a {Singular} {Potential} in a {Domain} with a {Conic} {Point}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {928--938},
     publisher = {mathdoc},
     volume = {92},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a12/}
}
TY  - JOUR
AU  - B. A. Khudaikuliev
TI  - Elliptic Equation with a Singular Potential in a Domain with a Conic Point
JO  - Matematičeskie zametki
PY  - 2012
SP  - 928
EP  - 938
VL  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a12/
LA  - ru
ID  - MZM_2012_92_6_a12
ER  - 
%0 Journal Article
%A B. A. Khudaikuliev
%T Elliptic Equation with a Singular Potential in a Domain with a Conic Point
%J Matematičeskie zametki
%D 2012
%P 928-938
%V 92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a12/
%G ru
%F MZM_2012_92_6_a12
B. A. Khudaikuliev. Elliptic Equation with a Singular Potential in a Domain with a Conic Point. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 928-938. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a12/

[1] P. Baras, J. A. Goldstein, “The heat equation with a singular potential”, Trans. Amer. Math. Soc., 284:1 (1984), 121–139 | DOI | MR | Zbl

[2] J. P. García Azorero, I. Peral Alonso, “Hardy inequalities and some critical elliptic and parabolic problems”, J. Differential Equations, 144:2 (1998), 441–476 | DOI | MR | Zbl

[3] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[4] V. A. Kondratev, E. M. Landis, “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 32, VINITI, M., 1988, 99–215 | MR | Zbl