Keywords: singular potential, conic domain, conic point, Laplace operator, Beltrami operator, Dirichlet boundary condition, Cauchy's inequality
@article{MZM_2012_92_6_a12,
author = {B. A. Khudaikuliev},
title = {Elliptic {Equation} with a {Singular} {Potential} in a {Domain} with a {Conic} {Point}},
journal = {Matemati\v{c}eskie zametki},
pages = {928--938},
year = {2012},
volume = {92},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a12/}
}
B. A. Khudaikuliev. Elliptic Equation with a Singular Potential in a Domain with a Conic Point. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 928-938. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a12/
[1] P. Baras, J. A. Goldstein, “The heat equation with a singular potential”, Trans. Amer. Math. Soc., 284:1 (1984), 121–139 | DOI | MR | Zbl
[2] J. P. García Azorero, I. Peral Alonso, “Hardy inequalities and some critical elliptic and parabolic problems”, J. Differential Equations, 144:2 (1998), 441–476 | DOI | MR | Zbl
[3] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[4] V. A. Kondratev, E. M. Landis, “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 32, VINITI, M., 1988, 99–215 | MR | Zbl