Local Finitely Smooth Equivalence of Real Autonomous Systems with Two Pure Imaginary Eigenvalues
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 912-927

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with real autonomous systems of ordinary differential equations in a neighborhood of a nondegenerate singular point such that the matrix of the linearized system has two pure imaginary eigenvalues, all other eigenvalues lying outside the imaginary axis. It is proved that, for such systems having a focus on the center manifold, the problem of finitely smooth equivalence is solved in terms of the finite segments of the Taylor series of their right-hand sides.
Keywords: autonomous system of ordinary differential equations, finitely smooth equivalence of systems, pseudonormal form, resonance, shearing transformation.
@article{MZM_2012_92_6_a11,
     author = {V. S. Samovol},
     title = {Local {Finitely} {Smooth} {Equivalence} of {Real} {Autonomous} {Systems} with {Two} {Pure} {Imaginary} {Eigenvalues}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {912--927},
     publisher = {mathdoc},
     volume = {92},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a11/}
}
TY  - JOUR
AU  - V. S. Samovol
TI  - Local Finitely Smooth Equivalence of Real Autonomous Systems with Two Pure Imaginary Eigenvalues
JO  - Matematičeskie zametki
PY  - 2012
SP  - 912
EP  - 927
VL  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a11/
LA  - ru
ID  - MZM_2012_92_6_a11
ER  - 
%0 Journal Article
%A V. S. Samovol
%T Local Finitely Smooth Equivalence of Real Autonomous Systems with Two Pure Imaginary Eigenvalues
%J Matematičeskie zametki
%D 2012
%P 912-927
%V 92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a11/
%G ru
%F MZM_2012_92_6_a11
V. S. Samovol. Local Finitely Smooth Equivalence of Real Autonomous Systems with Two Pure Imaginary Eigenvalues. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 912-927. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a11/