The Covering Homotopy Extension Problem for Compact Transformation Groups
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 803-818
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the orbit space of universal (in the sense of Palais) $G$-spaces classifies $G$-spaces. Theorems on the extension of covering homotopy for $G$-spaces and on a homotopy representation
of the isovariant category $\operatorname{ISOV}$ are proved.
Keywords:
$G$-space, covering homotopy, universal $G$-space in the sense of Palais, absolute (neighborhood) extensor, classifying space.
Mots-clés : compact transformation group, orbit space
Mots-clés : compact transformation group, orbit space
@article{MZM_2012_92_6_a0,
author = {S. M. Ageev and D. D. Repov\v{s}},
title = {The {Covering} {Homotopy} {Extension} {Problem} for {Compact} {Transformation} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {803--818},
publisher = {mathdoc},
volume = {92},
number = {6},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a0/}
}
S. M. Ageev; D. D. Repovš. The Covering Homotopy Extension Problem for Compact Transformation Groups. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 803-818. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a0/