The Covering Homotopy Extension Problem for Compact Transformation Groups
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 803-818

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the orbit space of universal (in the sense of Palais) $G$-spaces classifies $G$-spaces. Theorems on the extension of covering homotopy for $G$-spaces and on a homotopy representation of the isovariant category $\operatorname{ISOV}$ are proved.
Keywords: $G$-space, covering homotopy, universal $G$-space in the sense of Palais, absolute (neighborhood) extensor, classifying space.
Mots-clés : compact transformation group, orbit space
@article{MZM_2012_92_6_a0,
     author = {S. M. Ageev and D. D. Repov\v{s}},
     title = {The {Covering} {Homotopy} {Extension} {Problem} for {Compact} {Transformation} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--818},
     publisher = {mathdoc},
     volume = {92},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
AU  - D. D. Repovš
TI  - The Covering Homotopy Extension Problem for Compact Transformation Groups
JO  - Matematičeskie zametki
PY  - 2012
SP  - 803
EP  - 818
VL  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a0/
LA  - ru
ID  - MZM_2012_92_6_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%A D. D. Repovš
%T The Covering Homotopy Extension Problem for Compact Transformation Groups
%J Matematičeskie zametki
%D 2012
%P 803-818
%V 92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a0/
%G ru
%F MZM_2012_92_6_a0
S. M. Ageev; D. D. Repovš. The Covering Homotopy Extension Problem for Compact Transformation Groups. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 803-818. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a0/