Asymptotics of the Solutions of the One-Dimensional Nonlinear System of Equations of Shallow Water with Degenerate Velocity
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 721-730.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of one-dimensional nonlinear equations of shallow water with degenerate velocity is considered. The change of variables taking the given system to a nonlinear system with small nonlinearity is proposed. Formal asymptotic solutions near the point of degeneracy are obtained.
Keywords: nonlinear system of equations of shallow water, Carrier–Greenspan transformation, Cauchy problem, Schwartz space, Duhamel integral, Hankel transform.
@article{MZM_2012_92_5_a7,
     author = {D. S. Minenkov},
     title = {Asymptotics of the {Solutions} of the {One-Dimensional} {Nonlinear} {System} of {Equations} of {Shallow} {Water} with {Degenerate} {Velocity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {721--730},
     publisher = {mathdoc},
     volume = {92},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a7/}
}
TY  - JOUR
AU  - D. S. Minenkov
TI  - Asymptotics of the Solutions of the One-Dimensional Nonlinear System of Equations of Shallow Water with Degenerate Velocity
JO  - Matematičeskie zametki
PY  - 2012
SP  - 721
EP  - 730
VL  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a7/
LA  - ru
ID  - MZM_2012_92_5_a7
ER  - 
%0 Journal Article
%A D. S. Minenkov
%T Asymptotics of the Solutions of the One-Dimensional Nonlinear System of Equations of Shallow Water with Degenerate Velocity
%J Matematičeskie zametki
%D 2012
%P 721-730
%V 92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a7/
%G ru
%F MZM_2012_92_5_a7
D. S. Minenkov. Asymptotics of the Solutions of the One-Dimensional Nonlinear System of Equations of Shallow Water with Degenerate Velocity. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 721-730. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a7/

[1] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Pure Appl. Math., 4, Interscience Publ., London, 1957 | MR | Zbl

[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[3] G. F. Carrier, H. P. Greenspan, “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4:1 (1958), 97–109 | DOI | MR | Zbl

[4] T. Vukašinac, P. Zhevandrov, “Geometric asymptotics for a degenerate hyperbolic equation”, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR | Zbl

[5] E. N. Pelinovsky, R. Kh. Mazova, Natural Hazards, 6:3 (1992), 227–249 | DOI

[6] S. Yu. Dobrokhotov, B. Tirotstsi, “Lokalizovannye resheniya odnomernoi nelineinoi sistemy uravnenii melkoi vody so skorostyu $c=\sqrt x$”, UMN, 65:1 (2010), 185–186 | MR | Zbl

[7] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity: I”, Russ. J. Math. Phys., 17:4 (2010), 434–447 | MR

[8] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/10.51

[9] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Leningradsk. un-t, L., 1980 | MR