Gr\"{o}bner--Shirshov Bases for Extended modular, Extended Hecke, and Picard Groups
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 699-706.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, Gröbner–Shirshov bases (noncommutative) for extended modular, extended Hecke and Picard groups are considered. A new algorithm for obtaining normal forms of elements and hence solving the word problem in these groups is proposed.
Keywords: extended modular group, extended Hecke group, Gröbner–Shirshov bases, word problem.
@article{MZM_2012_92_5_a5,
     author = {E. G. Karpuz and A. S. Cevik},
     title = {Gr\"{o}bner--Shirshov {Bases} for {Extended} modular, {Extended} {Hecke,} and {Picard} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {699--706},
     publisher = {mathdoc},
     volume = {92},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a5/}
}
TY  - JOUR
AU  - E. G. Karpuz
AU  - A. S. Cevik
TI  - Gr\"{o}bner--Shirshov Bases for Extended modular, Extended Hecke, and Picard Groups
JO  - Matematičeskie zametki
PY  - 2012
SP  - 699
EP  - 706
VL  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a5/
LA  - ru
ID  - MZM_2012_92_5_a5
ER  - 
%0 Journal Article
%A E. G. Karpuz
%A A. S. Cevik
%T Gr\"{o}bner--Shirshov Bases for Extended modular, Extended Hecke, and Picard Groups
%J Matematičeskie zametki
%D 2012
%P 699-706
%V 92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a5/
%G ru
%F MZM_2012_92_5_a5
E. G. Karpuz; A. S. Cevik. Gr\"{o}bner--Shirshov Bases for Extended modular, Extended Hecke, and Picard Groups. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 699-706. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a5/

[1] S. I. Adyan, V. G. Durnev, “Algoritmicheskie problemy dlya grupp i polugrupp”, UMN, 55:2 (2000), 3–94 | MR | Zbl

[2] A. I. Shirshov, “Nekotorye algoritmicheskie problemy dlya algebr Li”, Sib. matem. zhurn., 3 (1962), 292–296 | MR | Zbl

[3] H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero: I”, Ann. Math., 79:1 (1964), 109–203 | DOI | MR | Zbl

[4] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente der Restklassenringes nach einem nulldimensionalen Polynomideal, Dissertation, Universität Innsbruck, 1965 | Zbl

[5] L. A. Bokut', G. P. Kukin, Algorithmic and Combinatorial Algebra, Math. Appl., 255, Kluwer Acad. Publ., Dordrecht, 1994 | MR | Zbl

[6] L. A. Bokut, P. S. Kolesnikov, “Bazisy Grëbnera–Shirshova: ot zarozhdeniya do nashikh dnei”, Voprosy teorii predstavlenii algebr i grupp. 7, Zap. nauchn. sem. POMI, 272, POMI, SPb., 2000, 26–67 | MR | Zbl

[7] L. A. Bokut, Y. Chen, “Gröbner–Shirshov bases: some new results”, Advances in Algebra and Combinatorics, World Sci. Publ., Hackensack, NJ, 2008, 35–56 | MR | Zbl

[8] B. Buchberger, “Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems”, Aequationes Math., 4:3 (1970), 374–383 | DOI | MR | Zbl

[9] F. Ateş, E. G. Karpuz, C. Kocapinar, A. S. Çevik, “Gröbner–Shirshov bases of some monoids”, Discrete Math., 311:12 (2011), 1064–1071 | DOI | MR | Zbl

[10] L. A. Bokut, Y. Chen, X. Zhao, “Gröbner–Shirshov bases for free inverse semigroups”, Int. J. Algebra Comput., 19:2 (2009), 129–143 | DOI | MR | Zbl

[11] L. Bokut, A. Vesnin, “Gröbner–Shirshov bases for some braid groups”, J. Symbolic Comput., 41:3-4 (2006), 357–371 | DOI | MR | Zbl

[12] Y. Chen, W. Chen, R. Luo, “Word problem for Novikov's and Boone's groups via Gröbner–Shirshov bases”, Southeast Asian Bull. Math., 32:5 (2008), 863–877 | MR | Zbl

[13] Y. Chen, “Gröbner–Shirshov bases for Schreier extentions of groups”, Comm. Algebra, 36:5 (2008), 1609–1625 | DOI | MR | Zbl

[14] Y. Chen, C. Zhong, “Gröbner–Shirshov bases for HNN extentions of groups and for the alternating group”, Comm. Algebra, 36:1 (2008), 94–103 | DOI | MR | Zbl

[15] E. Hecke, “Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung”, Math. Ann., 112:1 (1936), 664–699 | DOI | MR | Zbl

[16] G. A. Jones, J. S. Thornton, “Automorphisms and congruence subgroups of the extended modular group”, J. London Math. Soc. (2), 34:2 (1986), 26–40 | DOI | MR | Zbl

[17] S. Huang, “Generalized Hecke groups and Hecke polygons”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 187–214 | MR | Zbl

[18] Ö. Koruoglu, R. Şahin, S. İkikardeş, “The normal subgroup structure of the extended Hecke groups”, Bull. Braz. Math. Soc. (N.S.), 38:1 (2007), 51–65 | MR | Zbl

[19] Ö. Koruoğlu, R. Şahin, S. İkikardeş, I. N. Cangül, “Normal subgroups of Hecke groups $H(\lambda)$”, Algebr. Represent. Theory, 13:2 (2010), 219–230 | DOI | MR | Zbl

[20] R. Şahin, S. İkikardeş, Ö. Koruoğlu, “On the power subgroups of the extended modular group $\overline{\Gamma}$”, Turkish J. Math., 28:2 (2004), 143–151 | MR | Zbl

[21] A. S. Çevik, N. Y. Özgür, R. Şahin, “The extended Hecke groups as semi-direct products and related results”, Int. J. Appl. Math. Stat., 13:S08 (2008), 63–72 | MR

[22] A. S. Çevik, “The efficiency of standard wreath product”, Proc. Edinburgh Math. Soc. (2), 43:2 (2000), 415–423 | DOI | MR | Zbl

[23] A. M. Brunner, “A two-generator presentation for the Picard group”, Proc. Amer. Math. Soc., 115:1 (1992), 45–46 | DOI | MR | Zbl