Gr\"{o}bner--Shirshov Bases for Extended modular, Extended Hecke, and Picard Groups
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 699-706

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, Gröbner–Shirshov bases (noncommutative) for extended modular, extended Hecke and Picard groups are considered. A new algorithm for obtaining normal forms of elements and hence solving the word problem in these groups is proposed.
Keywords: extended modular group, extended Hecke group, Gröbner–Shirshov bases, word problem.
@article{MZM_2012_92_5_a5,
     author = {E. G. Karpuz and A. S. Cevik},
     title = {Gr\"{o}bner--Shirshov {Bases} for {Extended} modular, {Extended} {Hecke,} and {Picard} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {699--706},
     publisher = {mathdoc},
     volume = {92},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a5/}
}
TY  - JOUR
AU  - E. G. Karpuz
AU  - A. S. Cevik
TI  - Gr\"{o}bner--Shirshov Bases for Extended modular, Extended Hecke, and Picard Groups
JO  - Matematičeskie zametki
PY  - 2012
SP  - 699
EP  - 706
VL  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a5/
LA  - ru
ID  - MZM_2012_92_5_a5
ER  - 
%0 Journal Article
%A E. G. Karpuz
%A A. S. Cevik
%T Gr\"{o}bner--Shirshov Bases for Extended modular, Extended Hecke, and Picard Groups
%J Matematičeskie zametki
%D 2012
%P 699-706
%V 92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a5/
%G ru
%F MZM_2012_92_5_a5
E. G. Karpuz; A. S. Cevik. Gr\"{o}bner--Shirshov Bases for Extended modular, Extended Hecke, and Picard Groups. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 699-706. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a5/