Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 643-661.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of the paper are obtained for functions from homogeneous spaces of functions defined on a locally compact Abelian group. The notion of the Beurling spectrum, or essential spectrum, of functions is introduced. If a continuous unitary character is an essential point of the spectrum of a function, then it is the $\mathrm{c}$-limit of a linear combination of shifts of the function in question. The notion of a slowly varying function at infinity is introduced, and the properties of such functions are considered. For a parabolic equation with initial function from a homogeneous space, it is proved that the weak solution as a function of the first argument is a slowly varying function at infinity.
Keywords: Beurling spectrum of a function, locally compact Abelian group, continuous unitary character, Banach space, Banach module, directed set, Stepanov set.
Mots-clés : parabolic equation, Fourier transform
@article{MZM_2012_92_5_a0,
     author = {A. G. Baskakov and N. S. Kaluzhina},
     title = {Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--661},
     publisher = {mathdoc},
     volume = {92},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - N. S. Kaluzhina
TI  - Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations
JO  - Matematičeskie zametki
PY  - 2012
SP  - 643
EP  - 661
VL  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a0/
LA  - ru
ID  - MZM_2012_92_5_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A N. S. Kaluzhina
%T Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations
%J Matematičeskie zametki
%D 2012
%P 643-661
%V 92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a0/
%G ru
%F MZM_2012_92_5_a0
A. G. Baskakov; N. S. Kaluzhina. Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 643-661. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a0/

[1] B. M. Levitan, Pochti-periodicheskie funktsii, GITTL, M., 1953 | MR | Zbl

[2] B. M. Levitan, V. V. Zhikov, Pochti-periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978 | MR | Zbl

[3] A. V. Kostin, V. A. Kostin, K teorii funktsionalnykh prostranstv Stepanova, Voronezhskii gos. un-t, Voronezh, 2007

[4] A. G. Baskakov, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | MR | Zbl

[5] A. G. Baskakov, “O sostoyaniyakh obratimosti i usloviyakh fredgolmovosti lineinykh differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami”, Matem. sb. (to appear)

[6] A. G. Baskakov, “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Funktsionalnyi analiz, SMFN, 9, MAI, M., 2004, 3–151 | MR | Zbl

[7] A. G. Baskakov, I. A. Krishtal, “Garmonicheskii analiz kauzalnykh operatorov i ikh spektralnye svoistva”, Izv. RAN. Ser. matem., 69:3 (2005), 3–54 | MR | Zbl

[8] A. Beurling, “Un théorème sur les fonctions bornèes et uniformément continues sur l'axe réel”, Acta Math., 77:1 (1945), 127–136 | DOI | MR | Zbl

[9] A. G. Baskakov, Garmonicheskii analiz lineinykh operatorov, Voronezhskii gos. un-t, Voronezh, 1987 | MR | Zbl

[10] P. Koosis, “On the spectral analysis of bounded functions”, Pacific J. Math., 16 (1966), 121–128 | MR | Zbl

[11] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz. T. 2. Struktura i analiz kompaktnykh grupp. Analiz na lokalno kompaktnykh abelevykh gruppakh, Nauka, M., 1975 | MR | Zbl

[12] S. Godement, “Théorèmes taubériens et théorie spectrale”, Ann. Sci. École Norm. Sup. (3), 64 (1947), 119–138 | MR | Zbl

[13] Y. Domar, “Some results on narrow spectral analysis”, Math. Scand., 20 (1967), 5–18 | MR | Zbl

[14] N. Viner, Integral Fure i nekotorye ego prilozheniya, Fizmatlit, M., 1963 | MR | Zbl

[15] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 2. Spektralnaya teoriya, IL, M., 1966 | MR | Zbl

[16] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[17] I. N. Pak, “O summakh trigonometricheskikh ryadov”, UMN, 35:2 (1980), 91–144 | MR | Zbl

[18] M. Karamata, “Sur un mode de croissance régulière. Théorèmes fondamentaux”, Bull. Soc. Math. France, 61 (1933), 55–62 | MR | Zbl

[19] G. H. Hardy, “A theorem concerning trigonometrical series”, J. London Math. Soc., 3 (1928), 12–13 | DOI | Zbl

[20] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[21] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956 | MR | Zbl

[22] M. R. Schmidt, “Über divergente Folgen und lineare Mittelbildungen”, Math. Z., 22:1 (1925), 89–152 | DOI | MR | Zbl

[23] V. D. Repnikov, “O ravnomernoi stabilizatsii resheniya zadachi Koshi dlya parabolicheskikh uravnenii”, DAN SSSR, 157:3 (1964), 532–535 | MR | Zbl

[24] V. V. Zhikov, “O stabilizatsii reshenii parabolicheskikh uravnenii”, Matem. sb., 104:4 (1977), 597–616 | MR | Zbl

[25] V. N. Denisov, V. V. Zhikov, “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskikh uravnenii”, Matem. zametki, 37:6 (1985), 834–850 | MR | Zbl

[26] V. N. Denisov, “O povedenii reshenii parabolicheskikh uravnenii pri bolshikh znacheniyakh vremeni”, UMN, 60:4 (2005), 145–212 | MR | Zbl