Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 643-661
Voir la notice de l'article provenant de la source Math-Net.Ru
The results of the paper are obtained for functions from homogeneous spaces of functions defined on a locally compact Abelian group. The notion of the Beurling spectrum, or essential spectrum, of functions is introduced. If a continuous unitary character is an essential point of the spectrum of a function, then it is the $\mathrm{c}$-limit of a linear combination of shifts of the function in question. The notion of a slowly varying function at infinity is introduced, and the properties of such functions are considered. For a parabolic equation with initial function from a homogeneous space, it is proved that the weak solution as a function of the first argument is a slowly varying function at infinity.
Keywords:
Beurling spectrum of a function, locally compact Abelian group, continuous unitary character, Banach space, Banach module, directed set, Stepanov set.
Mots-clés : parabolic equation, Fourier transform
Mots-clés : parabolic equation, Fourier transform
@article{MZM_2012_92_5_a0,
author = {A. G. Baskakov and N. S. Kaluzhina},
title = {Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations},
journal = {Matemati\v{c}eskie zametki},
pages = {643--661},
publisher = {mathdoc},
volume = {92},
number = {5},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a0/}
}
TY - JOUR AU - A. G. Baskakov AU - N. S. Kaluzhina TI - Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations JO - Matematičeskie zametki PY - 2012 SP - 643 EP - 661 VL - 92 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a0/ LA - ru ID - MZM_2012_92_5_a0 ER -
%0 Journal Article %A A. G. Baskakov %A N. S. Kaluzhina %T Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations %J Matematičeskie zametki %D 2012 %P 643-661 %V 92 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a0/ %G ru %F MZM_2012_92_5_a0
A. G. Baskakov; N. S. Kaluzhina. Beurlings theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 643-661. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a0/