On Certain Loci of Hankel $r$-Planes of~$\mathbb P^m$
Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 597-608

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the loci of Hankel $(l+1)$-planes in $\mathbb P^m$ containing a fixed $l$-plane $\pi_l$. We investigate the singular locus of the variety $H(r,m)$ of Hankel $r$-planes in $\mathbb P^m$.
Keywords: Grassmannian, singularities, Hankel variety, projective space, standard rational normal curve
Mots-clés : quadric hypersurface.
@article{MZM_2012_92_4_a9,
     author = {G. Failla},
     title = {On {Certain} {Loci} of {Hankel} $r${-Planes} of~$\mathbb P^m$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {597--608},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a9/}
}
TY  - JOUR
AU  - G. Failla
TI  - On Certain Loci of Hankel $r$-Planes of~$\mathbb P^m$
JO  - Matematičeskie zametki
PY  - 2012
SP  - 597
EP  - 608
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a9/
LA  - ru
ID  - MZM_2012_92_4_a9
ER  - 
%0 Journal Article
%A G. Failla
%T On Certain Loci of Hankel $r$-Planes of~$\mathbb P^m$
%J Matematičeskie zametki
%D 2012
%P 597-608
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a9/
%G ru
%F MZM_2012_92_4_a9
G. Failla. On Certain Loci of Hankel $r$-Planes of~$\mathbb P^m$. Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 597-608. http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a9/