Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_4_a9, author = {G. Failla}, title = {On {Certain} {Loci} of {Hankel} $r${-Planes} of~$\mathbb P^m$}, journal = {Matemati\v{c}eskie zametki}, pages = {597--608}, publisher = {mathdoc}, volume = {92}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a9/} }
G. Failla. On Certain Loci of Hankel $r$-Planes of~$\mathbb P^m$. Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 597-608. http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a9/
[1] S. Giuffrida, R. Maggioni, “Hankel Planes”, J. Pure Appl. Algebra, 209:1 (2007), 119–138 | DOI | MR | Zbl
[2] G. Heinig, K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Oper. Theory Adv. Appl., 13, Birkhäuser-Verlag, Basel, 1984 | MR | Zbl
[3] S. Giuffrida, K. Ranestad, “A geometric characterization of Hankel $r$-planes”, Bull. London Math. Soc., 42:5 (2010), 912–916 | DOI | MR | Zbl
[4] G. Failla, S. Giuffrida, “On the Hankel lines variety $H(1,m)\subseteq\mathbb G(1,m)$”, Afr. Diaspora J. Math. (N.S.), 8:2 (2009), 71–79 | MR | Zbl
[5] G. Failla, “On sequences of integers for Hankel $r$-planes in a linear space $\Sigma$ of $\mathbb P^m$”, Matematiche (Catania), 64:1 (2009), 113–125 | MR | Zbl
[6] J. Harris, Algebraic Geometry. A First Course, Grad. Texts in Math., 133, Springer-Verlag, New York, 1992 | MR | Zbl
[7] A. Conca, J. Herzog, G. Valla, “Sagbi bases with applications to blow-up algebras”, J. Reine Angew. Math., 474 (1996), 113–138 | MR | Zbl