Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_4_a10, author = {I. D. Shkredov}, title = {On the {Gowers} {Norms} of {Certain} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {609--627}, publisher = {mathdoc}, volume = {92}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a10/} }
I. D. Shkredov. On the Gowers Norms of Certain Functions. Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 609-627. http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a10/
[1] W. T. Gowers, “A new proof of Szemerédi's theorem for arithmetic progressions of length four”, Geom. Funct. Anal., 8:3 (1998), 529–551 | DOI | MR | Zbl
[2] W. T. Gowers, “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl
[3] B. Green, T. Tao, “The primes contain arbitrarily long arithmetic progressions”, Ann. of Math. (2), 167:2 (2008), 481–547 | DOI | MR | Zbl
[4] B. Green, T. Tao, “An inverse theorem for the Gowers $U^3(G)$ norm”, Proc. Edinb. Math. Soc. (2), 51:1 (2008), 73–153 | DOI | MR | Zbl
[5] B. Green, T. Tao, “The distribution of polynomials over finite fields, with applications to the Gowers norms”, Contrib. Discrete Math., 4:2 (2009), 1–36 | MR | Zbl
[6] B. Green, T. Tao, “An equivalence between inverse sumset theorems and inverse conjectures for the $U^3$ norm”, Math. Proc. Cambridge Philos. Soc., 149:1 (2010), 1–19 | DOI | MR | Zbl
[7] B. Green, T. Tao, “The quantitative behaviour of polynomial orbits on nilmanifolds”, Ann. of Math. (2), 175:2 (2012), 465–540 | DOI | MR | Zbl
[8] B. Green, T. Tao, “Quadratic uniformity for the Möbius function”, Ann. Inst. Fourier (Grenoble), 58:6 (2008), 1863–1935 | DOI | MR | Zbl
[9] B. Green, “Finite field models in additive combinatorics”, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 1–27 | MR | Zbl
[10] T. Tao, T. Ziegler, “The inverse conjecture for the Gowers norm over finite fields via the correspondence principle”, Anal. PDE, 3:1 (2010), 1–20 | DOI | MR | Zbl
[11] A. Samorodnitsky, L. Trevisan, “Gowers uniformity, influence of variables, and PCPs”, SIAM J. Comput., 39:1 (2009), 323–360 | DOI | MR | Zbl
[12] S. Lovett, R. Meshulam, A. Samorodnitsky, “Inverse conjecture for the Gowers norm is false”, Theory Comput., 7 (2011), 131–145 | DOI | MR
[13] I. D. Shkredov, “Ob odnoi zadache Gauersa”, Izv. RAN. Ser. matem., 70:2 (2006), 179–221 | MR | Zbl
[14] I. D. Shkredov, “On a generalization of Szemerédi's theorem”, Proc. London Math. Soc. (3), 93:3 (2006), 723–760 | DOI | MR | Zbl
[15] I. D. Shkredov, “O dvumernom analoge teoremy Semeredi v abelevykh gruppakh”, Izv. RAN. Ser. matem., 73:5 (2009), 181–224 | MR | Zbl
[16] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl
[17] T. Tao, “A quantitative ergodic theory proof of Szemerédi's theorem”, Electron. J. Combin., 13:1 (2006), Research Paper 99 | MR | Zbl
[18] T. Tao, “Norm convergence of multiple ergodic averages for commuting transformations”, Ergodic Theory Dynam. Systems, 28:2 (2008), 657–688 | DOI | MR | Zbl
[19] B. Host, B. Kra, “Nonconventional ergodic averages and nilmanifolds”, Ann. of Math. (2), 161:1 (2005), 397–488 | DOI | MR | Zbl
[20] B. Host, B. Kra, “Convergence of Conze–Lesigne averages”, Ergodic Theory Dynam. Systems, 21:2 (2001), 493–509 | DOI | MR | Zbl
[21] B. Host, B. Kra, “Convergence of polynomial ergodic averages”, Israel J. Math., 149:1–19 (2005) | MR | Zbl
[22] T. Ziegler, “A non-conventional ergodic theorem for a nilsystem”, Ergodic Theory Dynam. Systems, 25:4 (2005), 1357–1370 | DOI | MR | Zbl
[23] T. Ziegler, “Universal characteristic factors and Furstenberg averages”, J. Amer. Math. Soc., 20:1 (2007), 53–97 | DOI | MR | Zbl
[24] T. Austin, On the Norm Convergence of Nonconventional Ergodic Averages, Preprint
[25] W. T. Gowers, “Quasirandomness, counting and regularity for 3-uniform hypergraphs”, Combin. Probab. Comput., 15:1-2 (2006), 143–184 | DOI | MR | Zbl
[26] W. T. Gowers, “Hypergraph regularity and the multidimensional Szemerédi theorem”, Ann. of Math. (2), 166:3 (2007), 897–946 | DOI | MR | Zbl
[27] P. Erdös, E. Szemerédi, “On sums and products of integers”, Studies in Pure Mathematics, Birkhäuser-Verlag, Basel, 1983, 213–218 | MR | Zbl
[28] J. Bourgain, N. Katz, T. Tao, “A sum-product estimate in finite fields i their applications”, Geom. Funct. Anal., 14:1 (2004), 27–57 | DOI | MR | Zbl
[29] I. M. Vinogradov, Osnovy teorii chisel, Lan, SPb., 2004 | MR | Zbl