On the Gowers Norms of Certain Functions
Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 609-627.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider functions $f(x,y)$ whose smallness condition for the rectangular norm implies the smallness of the rectangular norm for $f(x,x+y)$. We also study families of functions with a similar property for the higher Gowers norms. The method of proof is based on a transfer principle for sums between special systems of linear equations.
Keywords: Gowers norm, rectangular norm, probability measure, probability space, finite Abelian group, Parseval's inequality, Fourier series.
@article{MZM_2012_92_4_a10,
     author = {I. D. Shkredov},
     title = {On the {Gowers} {Norms} of {Certain} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {609--627},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a10/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On the Gowers Norms of Certain Functions
JO  - Matematičeskie zametki
PY  - 2012
SP  - 609
EP  - 627
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a10/
LA  - ru
ID  - MZM_2012_92_4_a10
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On the Gowers Norms of Certain Functions
%J Matematičeskie zametki
%D 2012
%P 609-627
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a10/
%G ru
%F MZM_2012_92_4_a10
I. D. Shkredov. On the Gowers Norms of Certain Functions. Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 609-627. http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a10/

[1] W. T. Gowers, “A new proof of Szemerédi's theorem for arithmetic progressions of length four”, Geom. Funct. Anal., 8:3 (1998), 529–551 | DOI | MR | Zbl

[2] W. T. Gowers, “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl

[3] B. Green, T. Tao, “The primes contain arbitrarily long arithmetic progressions”, Ann. of Math. (2), 167:2 (2008), 481–547 | DOI | MR | Zbl

[4] B. Green, T. Tao, “An inverse theorem for the Gowers $U^3(G)$ norm”, Proc. Edinb. Math. Soc. (2), 51:1 (2008), 73–153 | DOI | MR | Zbl

[5] B. Green, T. Tao, “The distribution of polynomials over finite fields, with applications to the Gowers norms”, Contrib. Discrete Math., 4:2 (2009), 1–36 | MR | Zbl

[6] B. Green, T. Tao, “An equivalence between inverse sumset theorems and inverse conjectures for the $U^3$ norm”, Math. Proc. Cambridge Philos. Soc., 149:1 (2010), 1–19 | DOI | MR | Zbl

[7] B. Green, T. Tao, “The quantitative behaviour of polynomial orbits on nilmanifolds”, Ann. of Math. (2), 175:2 (2012), 465–540 | DOI | MR | Zbl

[8] B. Green, T. Tao, “Quadratic uniformity for the Möbius function”, Ann. Inst. Fourier (Grenoble), 58:6 (2008), 1863–1935 | DOI | MR | Zbl

[9] B. Green, “Finite field models in additive combinatorics”, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 1–27 | MR | Zbl

[10] T. Tao, T. Ziegler, “The inverse conjecture for the Gowers norm over finite fields via the correspondence principle”, Anal. PDE, 3:1 (2010), 1–20 | DOI | MR | Zbl

[11] A. Samorodnitsky, L. Trevisan, “Gowers uniformity, influence of variables, and PCPs”, SIAM J. Comput., 39:1 (2009), 323–360 | DOI | MR | Zbl

[12] S. Lovett, R. Meshulam, A. Samorodnitsky, “Inverse conjecture for the Gowers norm is false”, Theory Comput., 7 (2011), 131–145 | DOI | MR

[13] I. D. Shkredov, “Ob odnoi zadache Gauersa”, Izv. RAN. Ser. matem., 70:2 (2006), 179–221 | MR | Zbl

[14] I. D. Shkredov, “On a generalization of Szemerédi's theorem”, Proc. London Math. Soc. (3), 93:3 (2006), 723–760 | DOI | MR | Zbl

[15] I. D. Shkredov, “O dvumernom analoge teoremy Semeredi v abelevykh gruppakh”, Izv. RAN. Ser. matem., 73:5 (2009), 181–224 | MR | Zbl

[16] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl

[17] T. Tao, “A quantitative ergodic theory proof of Szemerédi's theorem”, Electron. J. Combin., 13:1 (2006), Research Paper 99 | MR | Zbl

[18] T. Tao, “Norm convergence of multiple ergodic averages for commuting transformations”, Ergodic Theory Dynam. Systems, 28:2 (2008), 657–688 | DOI | MR | Zbl

[19] B. Host, B. Kra, “Nonconventional ergodic averages and nilmanifolds”, Ann. of Math. (2), 161:1 (2005), 397–488 | DOI | MR | Zbl

[20] B. Host, B. Kra, “Convergence of Conze–Lesigne averages”, Ergodic Theory Dynam. Systems, 21:2 (2001), 493–509 | DOI | MR | Zbl

[21] B. Host, B. Kra, “Convergence of polynomial ergodic averages”, Israel J. Math., 149:1–19 (2005) | MR | Zbl

[22] T. Ziegler, “A non-conventional ergodic theorem for a nilsystem”, Ergodic Theory Dynam. Systems, 25:4 (2005), 1357–1370 | DOI | MR | Zbl

[23] T. Ziegler, “Universal characteristic factors and Furstenberg averages”, J. Amer. Math. Soc., 20:1 (2007), 53–97 | DOI | MR | Zbl

[24] T. Austin, On the Norm Convergence of Nonconventional Ergodic Averages, Preprint

[25] W. T. Gowers, “Quasirandomness, counting and regularity for 3-uniform hypergraphs”, Combin. Probab. Comput., 15:1-2 (2006), 143–184 | DOI | MR | Zbl

[26] W. T. Gowers, “Hypergraph regularity and the multidimensional Szemerédi theorem”, Ann. of Math. (2), 166:3 (2007), 897–946 | DOI | MR | Zbl

[27] P. Erdös, E. Szemerédi, “On sums and products of integers”, Studies in Pure Mathematics, Birkhäuser-Verlag, Basel, 1983, 213–218 | MR | Zbl

[28] J. Bourgain, N. Katz, T. Tao, “A sum-product estimate in finite fields i their applications”, Geom. Funct. Anal., 14:1 (2004), 27–57 | DOI | MR | Zbl

[29] I. M. Vinogradov, Osnovy teorii chisel, Lan, SPb., 2004 | MR | Zbl