On a Nonlinear Scattering Model
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 368-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions for the existence and blow-up of global solutions of systems of nonlinear wave equations with compactly supported initial data and critical nonlinearities arising from the scattering theory of electromagnetic waves.
Keywords: nonlinear scattering, semilinear wave equation, Cauchy problem, critical hyperbola, Hölder continuity.
Mots-clés : Radon transform, Strauss conjecture
@article{MZM_2012_92_3_a4,
     author = {E. I. Galakhov},
     title = {On a {Nonlinear} {Scattering} {Model}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {368--380},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a4/}
}
TY  - JOUR
AU  - E. I. Galakhov
TI  - On a Nonlinear Scattering Model
JO  - Matematičeskie zametki
PY  - 2012
SP  - 368
EP  - 380
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a4/
LA  - ru
ID  - MZM_2012_92_3_a4
ER  - 
%0 Journal Article
%A E. I. Galakhov
%T On a Nonlinear Scattering Model
%J Matematičeskie zametki
%D 2012
%P 368-380
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a4/
%G ru
%F MZM_2012_92_3_a4
E. I. Galakhov. On a Nonlinear Scattering Model. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 368-380. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a4/

[1] W. A. Strauss, “Nonlinear scattering theory at low energy”, J. Funct. Anal., 41:1 (1981), 110–133 | DOI | MR | Zbl

[2] F. John, “Blow-up of solutions of nonlinear wave equations in three space dimensions”, Manuscripta Math., 28:1-3 (1979), 235–268 | DOI | MR | Zbl

[3] R. T. Glassey, “Finite-time blow-up for solutions of nonlinear wave equations”, Math. Z., 177:3 (1981), 323–340 | DOI | MR | Zbl

[4] R. T. Glassey, “Existence in the large for $\Box u=F(u)$ in two space dimensions”, Math. Z., 178:2 (1981), 233–261 | DOI | MR | Zbl

[5] V. Georgiev, H. Lindblad, S. D. Sogge, “Weighted Strichartz estimates and global existence for semilinear wave equations”, Amer. J. Math., 119:6 (1997), 1291–1319 | DOI | MR | Zbl

[6] Th. C. Sideris, “Nonexistence of global solutions to semilinear wave equations in high dimensions”, J. Differential Equations, 52:3 (1984), 378–406 | DOI | MR | Zbl

[7] J. Schaeffer, “The equation $u_{tt}-\delta u=|u|^p$ for the critical value of $p$”, Proc. Roy. Soc. Edinburgh Sect. A, 101:1-2 (1985), 31–44 | DOI | MR | Zbl

[8] B. Yordanov, Q. S. Zhang, “Finite-time blowup for wave equations with a potential”, SIAM J. Math. Anal., 36:5 (2005), 1426–1433 | DOI | MR | Zbl

[9] B. Yordanov, Q. S. Zhang, “Finite time blow up for critical wave equations in high dimensions”, J. Funct. Anal., 231:2 (2006), 361–374 | DOI | MR | Zbl

[10] E. I. Galakhov, “Razrushenie reshenii nekotorykh volnovykh uravnenii”, Differents. uravneniya, 45:1 (2009), 60–68 | MR | Zbl

[11] D. Del Santo, V. Georgiev, E. Mitidieri, “Global existence of the solutions and formation of singularities for a class of hyperbolic systems”, Geometrical Optics and Related Topics, Progr. Nonlinear Differential Equations Appl., 32, Birkhäuser Boston, Boston, MA, 1997, 117–140 | MR | Zbl

[12] D. Del Santo, E. Mitidieri, “Razrushenie reshenii giperbolicheskoi sistemy: kriticheskii sluchai”, Differents. uravneniya, 34:9 (1998), 1155–1161 | MR | Zbl

[13] S. I. Pokhozhaev, “Suschestvenno nelineinye emkosti, porozhdennye differentsialnymi operatorami”, DAN, 357 (1997), 592–594 | MR | Zbl

[14] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[15] V. Georgiev, H. Takamura, Z. Yi, “The life span of solutions to nonlinear systems of high dimensional wave equations”, Nonlinear Anal., 64:10 (2006), 2215–2250 | DOI | MR | Zbl