On a Nonlinear Scattering Model
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 368-380

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions for the existence and blow-up of global solutions of systems of nonlinear wave equations with compactly supported initial data and critical nonlinearities arising from the scattering theory of electromagnetic waves.
Keywords: nonlinear scattering, semilinear wave equation, Cauchy problem, critical hyperbola, Hölder continuity.
Mots-clés : Radon transform, Strauss conjecture
@article{MZM_2012_92_3_a4,
     author = {E. I. Galakhov},
     title = {On a {Nonlinear} {Scattering} {Model}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {368--380},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a4/}
}
TY  - JOUR
AU  - E. I. Galakhov
TI  - On a Nonlinear Scattering Model
JO  - Matematičeskie zametki
PY  - 2012
SP  - 368
EP  - 380
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a4/
LA  - ru
ID  - MZM_2012_92_3_a4
ER  - 
%0 Journal Article
%A E. I. Galakhov
%T On a Nonlinear Scattering Model
%J Matematičeskie zametki
%D 2012
%P 368-380
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a4/
%G ru
%F MZM_2012_92_3_a4
E. I. Galakhov. On a Nonlinear Scattering Model. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 368-380. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a4/