Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_3_a3, author = {V. P. Burichenko}, title = {On {Groups} {Whose} {Small-Order} {Elements} {Generate} a {Small} {Subgroup}}, journal = {Matemati\v{c}eskie zametki}, pages = {361--367}, publisher = {mathdoc}, volume = {92}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a3/} }
V. P. Burichenko. On Groups Whose Small-Order Elements Generate a Small Subgroup. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 361-367. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a3/
[1] Y. Berkovich, L. Kazarin, “Indices of elements and normal structure of finite groups”, J. Algebra, 283:2 (2005), 564–583 | DOI | MR | Zbl
[2] V. N. Tyutyanov, “Konechnye gruppy, u kotorykh vse elementy prostykh poryadkov soderzhatsya v podgruppe Frattini”, Izv. Gomelsk. gos. un-ta im. F. Skoriny, 41:2 (2007), 59–61
[3] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., eds. V. D. Mazurov, E. I. Khukhro, In-t matem. SO RAN, Novosibirsk, 2010
[4] K. S. Braun, Kogomologii grupp, Nauka, M., 1987 | MR | Zbl