Gigantic Component in Random Distance Graphs of Special Form
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 463-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of threshold probability for the existence of a gigantic component in a certain series of random distance graphs. The results obtained generalize the classical Erdős–Rényi theorems in the case of geometric graphs of special form.
Keywords: random distance graph, gigantic component in a random graph, classical Erdős–Rényi theorems, $k$-vertex tree, Stirling's formula.
@article{MZM_2012_92_3_a14,
     author = {A. R. Yarmuhametov},
     title = {Gigantic {Component} in {Random} {Distance} {Graphs} of {Special} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {463--480},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a14/}
}
TY  - JOUR
AU  - A. R. Yarmuhametov
TI  - Gigantic Component in Random Distance Graphs of Special Form
JO  - Matematičeskie zametki
PY  - 2012
SP  - 463
EP  - 480
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a14/
LA  - ru
ID  - MZM_2012_92_3_a14
ER  - 
%0 Journal Article
%A A. R. Yarmuhametov
%T Gigantic Component in Random Distance Graphs of Special Form
%J Matematičeskie zametki
%D 2012
%P 463-480
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a14/
%G ru
%F MZM_2012_92_3_a14
A. R. Yarmuhametov. Gigantic Component in Random Distance Graphs of Special Form. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 463-480. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a14/

[1] N. Alon, Dzh. Spenser, Veroyatnostnyi metod, Binom. Laboratoriya znanii, M., 2007 | MR | Zbl

[2] P. Erdős, A. Rényi, “On random graphs. I”, Publ. Math. Debrecen, 6 (1959), 290–297 | MR | Zbl

[3] P. Erdős, A. Rényi A., “On the evolution of random graphs”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), 17–61 | MR | Zbl

[4] P. Erdős, A. Rényi, “On the strength of connectedness of a random graph”, Acta Math. Acad. Sci. Hungar., 12:1-2 (1961), 261–267 | DOI | MR | Zbl

[5] B. Bollobás, Random Graphs, Academic Press, New York, 1985 | MR | Zbl

[6] V. F. Kolchin, Sluchainye grafy, Teoriya veroyatnostei i matematicheskaya statistika, Fizmatlit, M., 2000 | MR | Zbl

[7] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007

[8] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | MR | Zbl

[9] A. R. Yarmukhametov, “Drevesnye komponenty v sluchainykh distantsionnykh grafakh spetsialnogo vida”, Sovremennaya matematika i ee prilozheniya, 20 (2011), 98–110

[10] A. R. Yarmukhametov, “O svyaznosti sluchainykh distantsionnykh grafov spetsialnogo vida”, Chebyshevskii sb., 10:1(29) (2009), 95–108

[11] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, M., 1984 | MR | Zbl