Gigantic Component in Random Distance Graphs of Special Form
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 463-480

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of threshold probability for the existence of a gigantic component in a certain series of random distance graphs. The results obtained generalize the classical Erdős–Rényi theorems in the case of geometric graphs of special form.
Keywords: random distance graph, gigantic component in a random graph, classical Erdős–Rényi theorems, $k$-vertex tree, Stirling's formula.
@article{MZM_2012_92_3_a14,
     author = {A. R. Yarmuhametov},
     title = {Gigantic {Component} in {Random} {Distance} {Graphs} of {Special} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {463--480},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a14/}
}
TY  - JOUR
AU  - A. R. Yarmuhametov
TI  - Gigantic Component in Random Distance Graphs of Special Form
JO  - Matematičeskie zametki
PY  - 2012
SP  - 463
EP  - 480
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a14/
LA  - ru
ID  - MZM_2012_92_3_a14
ER  - 
%0 Journal Article
%A A. R. Yarmuhametov
%T Gigantic Component in Random Distance Graphs of Special Form
%J Matematičeskie zametki
%D 2012
%P 463-480
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a14/
%G ru
%F MZM_2012_92_3_a14
A. R. Yarmuhametov. Gigantic Component in Random Distance Graphs of Special Form. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 463-480. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a14/