New Characteristics of Infinitesimal Isometry and Ricci Solitons
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 459-462.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a vector field $X$ on a compact Riemannian manifold $(M,g)$ with Levi-Cività connection $\nabla$ is an infinitesimal isometry if and only if it satisfies the system of differential equations: $\operatorname{trace}_g(L_X\nabla)=0$, $\operatorname{trace}_g(L_X\operatorname{Ric})=0$, where $L_X$ is the Lie derivative in the direction of $X$ and $\operatorname{Ric}$ is the Ricci tensor. It follows from the second assertion that the Ricci soliton on a compact manifold $M$ is trivial if its vector field $X$ satisfies one of the following two conditions: $\operatorname{trace}_g(L_X\operatorname{Ric})\le 0$ or $\operatorname{trace}_g(L_X \operatorname{Ric})\ge 0$.
Keywords: compact Riemannian manifold, infinitesimal isometry, Levi–Cività connection, vector field, Ricci tensor, local harmonic transformation.
Mots-clés : Ricci soliton
@article{MZM_2012_92_3_a13,
     author = {S. E. Stepanov and I. G. Shandra},
     title = {New {Characteristics} of {Infinitesimal} {Isometry} and {Ricci} {Solitons}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {459--462},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a13/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. G. Shandra
TI  - New Characteristics of Infinitesimal Isometry and Ricci Solitons
JO  - Matematičeskie zametki
PY  - 2012
SP  - 459
EP  - 462
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a13/
LA  - ru
ID  - MZM_2012_92_3_a13
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. G. Shandra
%T New Characteristics of Infinitesimal Isometry and Ricci Solitons
%J Matematičeskie zametki
%D 2012
%P 459-462
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a13/
%G ru
%F MZM_2012_92_3_a13
S. E. Stepanov; I. G. Shandra. New Characteristics of Infinitesimal Isometry and Ricci Solitons. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 459-462. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a13/

[1] S. E. Stepanov, I. G. Shandra, “Geometry of infinitesimal harmonic transformations”, Ann. Global Anal. Geom., 24:3 (2003), 291–299 | DOI | MR | Zbl

[2] Sh. Koboyasi, Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR | Zbl

[3] K. Yano, C. Bokhner, Krivizna i chisla Betti, IL, M., 1957 | MR | Zbl

[4] W. R. Davis, D. R. Oliver, Jr., “Matter field space times admitting symmetry mappings satisfying vanishing contraction of the Lie deformation of the Ricci tensor”, Ann. Inst. H. Poincaré Sect. A (N.S.), 28:2 (1978), 197–206 | MR | Zbl

[5] L. H. Green, L. K. Norris, D. R. Oliver, W. R. Davis, “The Robertson–Walker metric and the symmetries belong to the family of contracted Ricci collineations”, General Relativity and Gravitation, 8:9 (1977), 731–736 | DOI | MR | Zbl

[6] B. Chow, D. Knopf, “The Ricci flow: An introduction”, Math. Surveys Monogr., 110, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[7] M. Eminenti, G. La Nave, C. Mantegazza, “Ricci solitons: the equation point of view”, Manuscripta Math., 127:3 (2008), 345–367 | DOI | MR | Zbl

[8] H.-D. Cao, “Geometry of Ricci solitons”, Chinese Ann. Math. Ser. B, 27:2 (2006), 121–142 | DOI | MR | Zbl

[9] S. E. Stepanov, V. N. Shelepova, “Zametka o solitonakh Richchi”, Matem. zametki, 86:3 (2009), 474–477 | MR | Zbl

[10] G. Perelman, The Entropy Formula for the Ricci Flow and Its Geometric Applications, 2002, arXiv: math.DG/0211159v1