New Characteristics of Infinitesimal Isometry and Ricci Solitons
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 459-462

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a vector field $X$ on a compact Riemannian manifold $(M,g)$ with Levi-Cività connection $\nabla$ is an infinitesimal isometry if and only if it satisfies the system of differential equations: $\operatorname{trace}_g(L_X\nabla)=0$, $\operatorname{trace}_g(L_X\operatorname{Ric})=0$, where $L_X$ is the Lie derivative in the direction of $X$ and $\operatorname{Ric}$ is the Ricci tensor. It follows from the second assertion that the Ricci soliton on a compact manifold $M$ is trivial if its vector field $X$ satisfies one of the following two conditions: $\operatorname{trace}_g(L_X\operatorname{Ric})\le 0$ or $\operatorname{trace}_g(L_X \operatorname{Ric})\ge 0$.
Keywords: compact Riemannian manifold, infinitesimal isometry, Levi–Cività connection, vector field, Ricci tensor, local harmonic transformation.
Mots-clés : Ricci soliton
@article{MZM_2012_92_3_a13,
     author = {S. E. Stepanov and I. G. Shandra},
     title = {New {Characteristics} of {Infinitesimal} {Isometry} and {Ricci} {Solitons}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {459--462},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a13/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. G. Shandra
TI  - New Characteristics of Infinitesimal Isometry and Ricci Solitons
JO  - Matematičeskie zametki
PY  - 2012
SP  - 459
EP  - 462
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a13/
LA  - ru
ID  - MZM_2012_92_3_a13
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. G. Shandra
%T New Characteristics of Infinitesimal Isometry and Ricci Solitons
%J Matematičeskie zametki
%D 2012
%P 459-462
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a13/
%G ru
%F MZM_2012_92_3_a13
S. E. Stepanov; I. G. Shandra. New Characteristics of Infinitesimal Isometry and Ricci Solitons. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 459-462. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a13/