Integral Properties of the Classical Warping Function of a Simply Connected Domain
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 447-458
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u(z,G)$ be the classical warping function of a simply connected domain $G$. We prove that the $L^p$-norms of the warping function with different exponents are related by a sharp isoperimetric inequality, including the functional $u(G)=\sup_{x\in G}u(x,G)$. A particular case of our result is the classical Payne inequality for the torsional rigidity of a domain. On the basis of the warping function, we construct a new physical functional possessing the isoperimetric monotonicity property. For a class of integrals depending on the warping function, we also obtain a priori estimates in terms of the $L^p$-norms of the warping function as well as the functional $u(G)$. In the proof, we use the estimation technique on level lines proposed by Payne.
Keywords:
warping function, isoperimetric inequality, isoperimetric monotonicity, torsional rigidity, Payne inequality, level lines, Schwartz symmetrization.
@article{MZM_2012_92_3_a12,
author = {R. G. Salakhudinov},
title = {Integral {Properties} of the {Classical} {Warping} {Function} of a {Simply} {Connected} {Domain}},
journal = {Matemati\v{c}eskie zametki},
pages = {447--458},
publisher = {mathdoc},
volume = {92},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a12/}
}
R. G. Salakhudinov. Integral Properties of the Classical Warping Function of a Simply Connected Domain. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 447-458. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a12/