Simplifying Method for Algebraic Approximation of Certain Algebraic Numbers
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 426-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new simple method for approximating certain algebraic numbers is developed. By applying this method, an effective upper bound is derived for the integral solutions of the quartic Thue equation with two parameters $$ tx^4-4sx^3y-6tx^2y^2+4sxy^3+ty^4=N, $$ where $s>32t^3$. As an application, Ljunggren's equation is solved in an elementary way.
Mots-clés : Diophantine equation
Keywords: Padè approximation, effective approximation.
@article{MZM_2012_92_3_a10,
     author = {X. Jingbo and Ch. Jianhua and Zh. Silan},
     title = {Simplifying {Method} for {Algebraic} {Approximation} of {Certain} {Algebraic} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {426--439},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a10/}
}
TY  - JOUR
AU  - X. Jingbo
AU  - Ch. Jianhua
AU  - Zh. Silan
TI  - Simplifying Method for Algebraic Approximation of Certain Algebraic Numbers
JO  - Matematičeskie zametki
PY  - 2012
SP  - 426
EP  - 439
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a10/
LA  - ru
ID  - MZM_2012_92_3_a10
ER  - 
%0 Journal Article
%A X. Jingbo
%A Ch. Jianhua
%A Zh. Silan
%T Simplifying Method for Algebraic Approximation of Certain Algebraic Numbers
%J Matematičeskie zametki
%D 2012
%P 426-439
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a10/
%G ru
%F MZM_2012_92_3_a10
X. Jingbo; Ch. Jianhua; Zh. Silan. Simplifying Method for Algebraic Approximation of Certain Algebraic Numbers. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 426-439. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a10/

[1] J. Liouville, “Sur des classes très-étendues de quantités dont la irrationelles algébriques”, C. R. Acad. Sci. Paris, 18 (1844), 883–885

[2] A. Baker, “Rational approximation to $\sqrt[3]{2}$ and other algebraic numbers”, Quart. J. Math. Oxford Ser. (2), 15 (1964), 375–383 | DOI | MR | Zbl

[3] A. Baker, “Rational approximations to certain algebraic numbers”, Proc. London Math. Soc. (3), 14 (1964), 385–398 | DOI | MR | Zbl

[4] A. Thue, Selected Mathematical Papers, Universitetsforlaget, Oslo, 1977 | MR | Zbl

[5] C. L. Siegel, “Die Gleichung $ax^n-by^n=c$”, Math. Ann, 114 (1937), 57–68 | DOI | MR | Zbl

[6] M. A. Bennett, A. Togbé, P. G. Walsh, “A generalization of a theorem of Bumby on quartic Diophantine equations”, Int. J. Number Theory, 2:2 (2006), 195–206 | DOI | MR | Zbl

[7] M. A. Bennett, B. M. M. de Weger, “On the diophantine equation $|ax^n-by^n|=1$”, Math. Comp., 67:221 (1998), 413–438 | DOI | MR | Zbl

[8] M. Bombieri, “On the Thue–Siegel–Dyson theorem”, Acta. Math., 184 (1982), 255–296 | DOI | MR | Zbl

[9] J. H. Chen, P. Voutier, “Complete solution of the diophantine equation $X^2+1=dY^4$ and related family of quartic Thue equations”, J. Number Theory, 62:1 (1997), 71–99 | DOI | MR | Zbl

[10] J. H. Chen, “A new solution of the diophantine equation $X^2+1=2Y^4$”, J. Number Theory, 48:1 (1994), 62–74 | DOI | MR | Zbl

[11] J. H. Chen, “A note on the diophantine equation $x^2+1=dy^4$”, Abh. Math. Sem. Univ. Hamburg, 64 (1994), 1–10 | DOI | MR | Zbl

[12] G. V. Chudnovsky, “On the method of Thue–Siegel”, Ann. of Math. (2), 117:2 (1983), 325–382 | DOI | MR | Zbl

[13] G. Lettl, A. Pethö, P. Voutier, “Simple families of Thue inequalities”, Trans. Amer. Math. Soc., 351:5 (1999), 1871–1894 | DOI | MR | Zbl

[14] A. Togbe, P. M. Voutier, P. G. Walsh, “Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$”, Acta Arith., 120:1 (2005), 39–58 | DOI | MR | Zbl

[15] J. Xia, J. Chen, S. Zhang, “On the family of Thue equation $|x^3+mx^2y-(m+3)xy^2+y^3|=k$”, Wuhan Univ. J. Nat. Sci., 11:3 (2006), 481–485 | DOI | MR | Zbl

[16] P. Yuan, “On algebraic approximations of certain algebraic numbers”, J. Number Theory, 102:1 (2003), 1–10 | DOI | MR | Zbl

[17] W. Ljunggren, “Zur Theorie der Gleichung $x^2+1=dy^4$”, Avh. Norske Vid. Akad. Oslo. I, 1942, no. 5, 27 pp. | MR | Zbl

[18] R. Steiner, N. Tzanakis, “Simplifying the solution of Ljunggren's equation $X^2+1=2Y^4$”, J. Number Theory, 37:2 (1991), 123–132 | DOI | MR | Zbl

[19] L. K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, 1982 | MR | Zbl