Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_3_a10, author = {X. Jingbo and Ch. Jianhua and Zh. Silan}, title = {Simplifying {Method} for {Algebraic} {Approximation} of {Certain} {Algebraic} {Numbers}}, journal = {Matemati\v{c}eskie zametki}, pages = {426--439}, publisher = {mathdoc}, volume = {92}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a10/} }
TY - JOUR AU - X. Jingbo AU - Ch. Jianhua AU - Zh. Silan TI - Simplifying Method for Algebraic Approximation of Certain Algebraic Numbers JO - Matematičeskie zametki PY - 2012 SP - 426 EP - 439 VL - 92 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a10/ LA - ru ID - MZM_2012_92_3_a10 ER -
X. Jingbo; Ch. Jianhua; Zh. Silan. Simplifying Method for Algebraic Approximation of Certain Algebraic Numbers. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 426-439. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a10/
[1] J. Liouville, “Sur des classes très-étendues de quantités dont la irrationelles algébriques”, C. R. Acad. Sci. Paris, 18 (1844), 883–885
[2] A. Baker, “Rational approximation to $\sqrt[3]{2}$ and other algebraic numbers”, Quart. J. Math. Oxford Ser. (2), 15 (1964), 375–383 | DOI | MR | Zbl
[3] A. Baker, “Rational approximations to certain algebraic numbers”, Proc. London Math. Soc. (3), 14 (1964), 385–398 | DOI | MR | Zbl
[4] A. Thue, Selected Mathematical Papers, Universitetsforlaget, Oslo, 1977 | MR | Zbl
[5] C. L. Siegel, “Die Gleichung $ax^n-by^n=c$”, Math. Ann, 114 (1937), 57–68 | DOI | MR | Zbl
[6] M. A. Bennett, A. Togbé, P. G. Walsh, “A generalization of a theorem of Bumby on quartic Diophantine equations”, Int. J. Number Theory, 2:2 (2006), 195–206 | DOI | MR | Zbl
[7] M. A. Bennett, B. M. M. de Weger, “On the diophantine equation $|ax^n-by^n|=1$”, Math. Comp., 67:221 (1998), 413–438 | DOI | MR | Zbl
[8] M. Bombieri, “On the Thue–Siegel–Dyson theorem”, Acta. Math., 184 (1982), 255–296 | DOI | MR | Zbl
[9] J. H. Chen, P. Voutier, “Complete solution of the diophantine equation $X^2+1=dY^4$ and related family of quartic Thue equations”, J. Number Theory, 62:1 (1997), 71–99 | DOI | MR | Zbl
[10] J. H. Chen, “A new solution of the diophantine equation $X^2+1=2Y^4$”, J. Number Theory, 48:1 (1994), 62–74 | DOI | MR | Zbl
[11] J. H. Chen, “A note on the diophantine equation $x^2+1=dy^4$”, Abh. Math. Sem. Univ. Hamburg, 64 (1994), 1–10 | DOI | MR | Zbl
[12] G. V. Chudnovsky, “On the method of Thue–Siegel”, Ann. of Math. (2), 117:2 (1983), 325–382 | DOI | MR | Zbl
[13] G. Lettl, A. Pethö, P. Voutier, “Simple families of Thue inequalities”, Trans. Amer. Math. Soc., 351:5 (1999), 1871–1894 | DOI | MR | Zbl
[14] A. Togbe, P. M. Voutier, P. G. Walsh, “Solving a family of Thue equations with an application to the equation $x^2-Dy^4=1$”, Acta Arith., 120:1 (2005), 39–58 | DOI | MR | Zbl
[15] J. Xia, J. Chen, S. Zhang, “On the family of Thue equation $|x^3+mx^2y-(m+3)xy^2+y^3|=k$”, Wuhan Univ. J. Nat. Sci., 11:3 (2006), 481–485 | DOI | MR | Zbl
[16] P. Yuan, “On algebraic approximations of certain algebraic numbers”, J. Number Theory, 102:1 (2003), 1–10 | DOI | MR | Zbl
[17] W. Ljunggren, “Zur Theorie der Gleichung $x^2+1=dy^4$”, Avh. Norske Vid. Akad. Oslo. I, 1942, no. 5, 27 pp. | MR | Zbl
[18] R. Steiner, N. Tzanakis, “Simplifying the solution of Ljunggren's equation $X^2+1=2Y^4$”, J. Number Theory, 37:2 (1991), 123–132 | DOI | MR | Zbl
[19] L. K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, 1982 | MR | Zbl