Multivalued Dynamics of Solutions of Autonomous Operator Differential Equations with Pseudomonotone Nonlinearity
Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 225-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlinear autonomous operator differential equations with pseudomonotone dependence between the defining parameters of the problem and study the dynamics of all weak solutions on the positive time semiaxis. We prove the existence of a trajectory and a global attractor and study their structure. As a possible application, we consider the class of high-order nonlinear parabolic equations.
Keywords: nonlinear operator differential equation, pseudomonotone nonlinearity, trajectory attractor, global attractor, dynamic semigroup, high-order nonlinear parabolic equation.
@article{MZM_2012_92_2_a5,
     author = {P. O. Kas'yanov},
     title = {Multivalued {Dynamics} of {Solutions} of {Autonomous} {Operator} {Differential} {Equations} with {Pseudomonotone} {Nonlinearity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {225--240},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a5/}
}
TY  - JOUR
AU  - P. O. Kas'yanov
TI  - Multivalued Dynamics of Solutions of Autonomous Operator Differential Equations with Pseudomonotone Nonlinearity
JO  - Matematičeskie zametki
PY  - 2012
SP  - 225
EP  - 240
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a5/
LA  - ru
ID  - MZM_2012_92_2_a5
ER  - 
%0 Journal Article
%A P. O. Kas'yanov
%T Multivalued Dynamics of Solutions of Autonomous Operator Differential Equations with Pseudomonotone Nonlinearity
%J Matematičeskie zametki
%D 2012
%P 225-240
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a5/
%G ru
%F MZM_2012_92_2_a5
P. O. Kas'yanov. Multivalued Dynamics of Solutions of Autonomous Operator Differential Equations with Pseudomonotone Nonlinearity. Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 225-240. http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a5/

[1] O. A. Ladyzhenskaya, “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave– Stoksa”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 6, Zap. nauchn. sem. LOMI, 27, Izd-vo «Nauka», Leningrad. otd., L., 1972, 91–115 | MR | Zbl

[2] O. A. Ladyzhenskaya, “O konechnomernosti ogranichennykh invariantnykh mnozhestv dlya sistemy Nave–Stoksa i drugikh dissipativnykh sistem”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 14, Zap. nauchn. sem. LOMI, 115, Izd-vo «Nauka», Leningrad. otd., L., 1982, 137–155 | MR | Zbl

[3] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[4] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988 | MR | Zbl

[5] O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Lezioni Lincee, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[6] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[7] A. V. Babin, M. I. Vishik, “Maksimalnye attraktory polugrupp, sootvetstvuyuschikh evolyutsionnym differentsialnym uravneniyam”, Matem. sb., 126:3 (1985), 397–419 | MR | Zbl

[8] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1309–1314 | MR | Zbl

[9] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl

[10] G. R. Sell, “Global attractors for the three-dimensional Navier–Stokes equations”, J. Dynam. Differential Equations, 8:1 (1996), 1–33 | DOI | MR | Zbl

[11] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR | Zbl

[12] M. Z. Zgurovskii, P. O. Kasyanov, V. S. Melnik, Differentsialno-operatornye vklyucheniya i variatsionnye neravenstva v beskonechnomernykh prostranstvakh, Naukova dumka, K., 2008

[13] K. Kuttler, “Non-degenerate implicit evolution inclusions”, Electron. J. Differential Equations, 2000, no. 34, 1–20 | MR | Zbl

[14] S. Migórski, “Boundary hemivariational inequalities of hyperbolic type and applications”, J. Global Optim., 31:3 (2005), 505–533 | DOI | MR | Zbl

[15] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[16] V. S. Melnik, J. Valero, “On attractors of multivalued semi-flows and differential inclusions”, Set-Valued Anal., 6:1 (1998), 83–111 | DOI | MR

[17] M. I. Vishik, V. V. Chepyzhov, “Traektornyi i globalnyi attraktory 3D sistemy Nave–Stoksa”, Matem. zametki, 71:2 (2002), 194–213 | MR | Zbl

[18] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time”, Discrete Contin. Dyn. Syst., 27:4 (2010), 1493–1509 | MR | Zbl

[19] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Systems Control Found. Appl., 2, Birkhäuser Boston, Boston, MA, 1990 | MR | Zbl

[20] J.-P. Aubin, A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984 | MR | Zbl

[21] A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential Attractors for Dissipative Evolution Equations, RAM Res. Appl. Math., 37, John Wiley Sons, Chichester, 1994 | MR | Zbl

[22] M. I. Vishik, S. V. Zelik, V. V. Chepyzhov, “Silnyi traektornyi attraktor dissipativnoi sistemy reaktsii-diffuzii”, DAN, 435:2 (2010), 155–159 | MR | Zbl

[23] Yu. A. Dubinskii, “Nelineinye parabolicheskie uravnenii vysokogo poryadka”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 37, VINITI, M., 1990, 89–166 | MR | Zbl