Semi-Invariants of 2-Representations of Quivers
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 106-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, an analog of the Procesi–Razmyslov theorem for the algebra of semi-invariants of representations of an arbitrary quiver with dimension vector $(2,2,\dots,2)$ is obtained.
Keywords: Procesi–Razmyslov theorem, representation of a quiver, dimension vector of a representation, algebra of semi-invariants.
@article{MZM_2012_92_1_a9,
     author = {S. N. Fedotov},
     title = {Semi-Invariants of {2-Representations} of {Quivers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {106--115},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a9/}
}
TY  - JOUR
AU  - S. N. Fedotov
TI  - Semi-Invariants of 2-Representations of Quivers
JO  - Matematičeskie zametki
PY  - 2012
SP  - 106
EP  - 115
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a9/
LA  - ru
ID  - MZM_2012_92_1_a9
ER  - 
%0 Journal Article
%A S. N. Fedotov
%T Semi-Invariants of 2-Representations of Quivers
%J Matematičeskie zametki
%D 2012
%P 106-115
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a9/
%G ru
%F MZM_2012_92_1_a9
S. N. Fedotov. Semi-Invariants of 2-Representations of Quivers. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 106-115. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a9/

[1] L. Le Bruyn, C. Procesi, “Semisimple representations of quivers”, Trans. Amer. Math. Soc., 317:2 (1990), 585–598 | DOI | MR | Zbl

[2] H. Derksen, J. Weyman, “Semi-invariants of quivers and saturation for Littlewood–Richardson coefficients”, J. Amer. Math. Soc., 13:3 (2000), 467–479 | DOI | MR | Zbl

[3] M. Domokos, A. N. Zubkov, “Semi-invariants of quivers as determinants”, Transform. Groups, 6:1 (2001), 9–24 | DOI | MR | Zbl

[4] A. Schofield, M. van den Bergh, “Semi-invariants of quivers for arbitrary dimension vectors”, Indag. Math. (N.S.), 12:1 (2001), 125–138 | DOI | MR | Zbl

[5] A. D. King, “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford Ser. (2), 45:180 (1994), 515–530 | DOI | MR | Zbl

[6] I. V. Arzhantsev, J. Hausen, “Geometric invariant theory via Cox rings”, J. Pure Appl. Algebra, 213:1 (2009), 154–172 | DOI | MR | Zbl

[7] A. A. Lopatin, “Minimal generating set for semi-invariants of quivers of dimension two”, Linear Algebra Appl., 434:8 (2011), 1920–1944 | DOI | MR | Zbl