Semi-Invariants of 2-Representations of Quivers
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 106-115

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, an analog of the Procesi–Razmyslov theorem for the algebra of semi-invariants of representations of an arbitrary quiver with dimension vector $(2,2,\dots,2)$ is obtained.
Keywords: Procesi–Razmyslov theorem, representation of a quiver, dimension vector of a representation, algebra of semi-invariants.
@article{MZM_2012_92_1_a9,
     author = {S. N. Fedotov},
     title = {Semi-Invariants of {2-Representations} of {Quivers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {106--115},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a9/}
}
TY  - JOUR
AU  - S. N. Fedotov
TI  - Semi-Invariants of 2-Representations of Quivers
JO  - Matematičeskie zametki
PY  - 2012
SP  - 106
EP  - 115
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a9/
LA  - ru
ID  - MZM_2012_92_1_a9
ER  - 
%0 Journal Article
%A S. N. Fedotov
%T Semi-Invariants of 2-Representations of Quivers
%J Matematičeskie zametki
%D 2012
%P 106-115
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a9/
%G ru
%F MZM_2012_92_1_a9
S. N. Fedotov. Semi-Invariants of 2-Representations of Quivers. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 106-115. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a9/