Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_1_a9, author = {S. N. Fedotov}, title = {Semi-Invariants of {2-Representations} of {Quivers}}, journal = {Matemati\v{c}eskie zametki}, pages = {106--115}, publisher = {mathdoc}, volume = {92}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a9/} }
S. N. Fedotov. Semi-Invariants of 2-Representations of Quivers. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 106-115. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a9/
[1] L. Le Bruyn, C. Procesi, “Semisimple representations of quivers”, Trans. Amer. Math. Soc., 317:2 (1990), 585–598 | DOI | MR | Zbl
[2] H. Derksen, J. Weyman, “Semi-invariants of quivers and saturation for Littlewood–Richardson coefficients”, J. Amer. Math. Soc., 13:3 (2000), 467–479 | DOI | MR | Zbl
[3] M. Domokos, A. N. Zubkov, “Semi-invariants of quivers as determinants”, Transform. Groups, 6:1 (2001), 9–24 | DOI | MR | Zbl
[4] A. Schofield, M. van den Bergh, “Semi-invariants of quivers for arbitrary dimension vectors”, Indag. Math. (N.S.), 12:1 (2001), 125–138 | DOI | MR | Zbl
[5] A. D. King, “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford Ser. (2), 45:180 (1994), 515–530 | DOI | MR | Zbl
[6] I. V. Arzhantsev, J. Hausen, “Geometric invariant theory via Cox rings”, J. Pure Appl. Algebra, 213:1 (2009), 154–172 | DOI | MR | Zbl
[7] A. A. Lopatin, “Minimal generating set for semi-invariants of quivers of dimension two”, Linear Algebra Appl., 434:8 (2011), 1920–1944 | DOI | MR | Zbl