Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_1_a8, author = {V. R. Fatalov}, title = {Integral {Functionals} for the {Exponential} of the {Wiener} {Process} and the {Brownian} {Bridge:} {Exact} {Asymptotics} and {Legendre} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {84--105}, publisher = {mathdoc}, volume = {92}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/} }
TY - JOUR AU - V. R. Fatalov TI - Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions JO - Matematičeskie zametki PY - 2012 SP - 84 EP - 105 VL - 92 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/ LA - ru ID - MZM_2012_92_1_a8 ER -
%0 Journal Article %A V. R. Fatalov %T Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions %J Matematičeskie zametki %D 2012 %P 84-105 %V 92 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/ %G ru %F MZM_2012_92_1_a8
V. R. Fatalov. Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 84-105. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/
[1] V. I. Piterbarg, V. R. Fatalov, “Metod Laplasa dlya veroyatnostnykh mer v banakhovykh prostranstvakh”, UMN, 50:6 (1995), 57–150 | MR | Zbl
[2] V. R. Fatalov, “Tochnye asimptotiki bolshikh uklonenii dlya gaussovskikh mer v gilbertovom prostranstve”, Izv. NAN Armenii. Matem., 27:5 (1992), 43–61 | MR | Zbl
[3] V. R. Fatalov, “Bolshie ukloneniya gaussovskikh mer v prostranstvakh $l^p$ i $L^p$, $p\ge2$”, TVP, 41:3 (1996), 682–689 | MR | Zbl
[4] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000
[5] M. Yor, “On some exponential functionals of Brownian motion”, Adv. Appl. Prob., 24:3 (1992), 509–531 | DOI | MR | Zbl
[6] P. Carr, M. Schröder, “Bessel processes, the integral of geometric Brownian motion, and Asian options”, TVP, 48:3 (2003), 503–533 | MR | Zbl
[7] V. R. Fatalov, “Tochnye asimptotiki raspredelenii integralnykh funktsionalov ot geometricheskogo brounovskogo dvizheniya i inye rodstvennye formuly”, Probl. peredachi inform., 43:3 (2007), 75–96 | MR | Zbl
[8] S. Albeverio, V. Fatalov, V. I. Piterbarg, “Asymptotic behavior of the sample mean of a function of the Wiener process and the Macdonald function”, J. Math. Sci. Univ. Tokyo, 16:1 (2009), 55–93 | MR | Zbl
[9] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR | Zbl
[10] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973 | MR | Zbl
[11] L. Robin, Fonctions sphériques de Legendre et fonctions sphéroïdales, Tome 1, Gauthier-Villars, Paris, 1957 ; Tome 2, Gauthier-Villars, Paris, 1958 ; Tome 3, Gauthier-Villars, Paris, 1959 | MR | Zbl | MR | Zbl | MR
[12] T. Khida, Brounovskoe dvizhenie, Nauka, M., 1987 | MR | Zbl
[13] Sh. Vatanabe, N. Ikeda, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR | Zbl
[14] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999 | MR | Zbl
[15] I. M. Kovalchik, “Integral Vinera”, UMN, 18:1 (1963), 97–134 | MR | Zbl
[16] B. Simon, Functional Integration and Quantum Physics, Pure Appl. Math., 86, Academic Press, New York, 1979 | MR | Zbl
[17] R. S. Ellis, J. S. Rosen, “Laplace's method for Gaussian integrals with an application to statistical mechanics”, Ann. Probab., 10:1 (1982), 47–66 ; Correction, 11:2 (1983), 456 | DOI | MR | Zbl | DOI
[18] R. S. Ellis, J. S. Rosen, “Asymptotic analysis of Gaussian integrals. I. Isolated minimum points”, Trans. Amer. Math. Soc., 273:2 (1982), 447–481 ; “Asymptotic analysis of Gaussian integrals. II. Manifold of minimum points”, Comm. Math. Phys., 82:2 (1981), 153–181 | DOI | MR | Zbl | DOI | MR | Zbl
[19] A. D. Venttsel, Predelnye teoremy o bolshikh ukloneniyakh dlya markovskikh sluchainykh protsessov, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1986 | MR | Zbl
[20] S. Kusuoka, Y. Tamura, “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38:3 (1991), 533–565 | MR | Zbl
[21] S. Liang, “Laplace approximations for large deviations of diffusion processes on Euclidean spaces”, J. Math. Soc. Japan, 57:2 (2005), 557–592 | DOI | MR | Zbl
[22] V. R. Fatalov, “Tochnye asimptotiki vinerovskikh integralov tipa Laplasa dlya $L^p$-funktsionalov”, Izv. RAN. Ser. matem., 74:1 (2010), 197–224 | MR | Zbl
[23] V. R. Fatalov, “Bolshie ukloneniya $L^p$-normy vinerovskogo protsessa so snosom”, Matem. zametki, 65:3 (1999), 429–436 | MR | Zbl
[24] V. R. Fatalov, “Asimptotiki bolshikh uklonenii vinerovskikh polei v $L^p$-norme, nelineinye uravneniya Khammershteina i giperbolicheskie kraevye zadachi vysokogo poryadka”, TVP, 47:4 (2002), 710–726 | MR | Zbl
[25] V. R. Fatalov, “Tochnye asimptotiki tipa Laplasa dlya umerennykh uklonenii raspredelenii summ nezavisimykh banakhovoznachnykh sluchainykh elementov”, TVP, 48:4 (2003), 720–744 | MR | Zbl
[26] V. R. Fatalov, “Tochnye asimptotiki bolshikh uklonenii statsionarnykh protsessov Ornshteina–Ulenbeka dlya $L^p$-funktsionalov, $p>0$”, Probl. peredachi inform., 42:1 (2006), 52–71 | MR | Zbl
[27] V. R. Fatalov, “Metod Laplasa dlya gaussovskikh mer v banakhovom prostranstve (mnogoobrazie tochek minimuma) s primeneniem k statistike Vatsona”, TVP (to appear)
[28] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, T. 1, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1971 | MR | Zbl
[29] Kh.-S. Go, Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979 | MR | Zbl
[30] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl
[31] M. A. Lifshits, Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995 | Zbl
[32] V. I. Bogachev, Gaussovskie mery, Nauka, M., 1997 | MR | Zbl
[33] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR
[34] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | MR | Zbl
[35] R. Bonic, J. Frampton, “Smooth functions on Banach manifolds”, J. Math. Mech., 15:5 (1966), 877–898 | MR | Zbl
[36] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl
[37] Funktsionalnyi analiz, ed. S. G. Krein, Nauka, M., 1972 | MR | Zbl
[38] A. Pich, Operatornye idealy, Mir, M., 1982 | MR | Zbl
[39] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl
[40] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl
[41] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl
[42] V. A. Sadovnichii, Teoriya operatorov, Izd-vo Mosk. un-ta, M., 1979 | MR | Zbl
[43] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1961 | MR | Zbl
[44] A. G. Kostyuchenko, I. S. Sargsyan, Raspredelenie sobstvennykh znachenii. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1979 | MR | Zbl
[45] L. Kollatts, Zadachi na sobstvennye znacheniya s tekhnicheskimi prilozheniyami, Nauka, M., 1968 | MR | Zbl
[46] F. Olver, Asimptotiki i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl
[47] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2003
[48] J.-D. Deuschel, D. Stroock, Large Deviations, Pure Appl. Math., 137, Academic Press, Boston, MA, 1989 | MR | Zbl
[49] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Appl. Math. (N. Y.), 38, Springer-Verlag, Berlin, 1998 | MR | Zbl