Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 84-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove results concerning the exact asymptotics of the probabilities $$ \mathsf{P}\biggl\{\int_0^1 e^{\varepsilon\xi(t)}\,dt\biggl\},\qquad \mathsf{P}\biggl\{\int_0^1 e^{\varepsilon|\xi(t)|}\,dt\biggl\} $$ as $\varepsilon \to 0$ and $0$ for two Gaussian processes $\xi(t)$, the Wiener process and the Brownian bridge. We also obtain asymptotic formulas for integrals of Laplace type. Our study is based on the Laplace method for Gaussian measures in Banach spaces. The calculations of the constants are reduced to the solution of an extremal problem for the action functional and to the study of the spectrum of a second-order differential operator of Sturm–Liouville type using the Legendre functions.
Keywords: Wiener process, Brownian bridge, Legendre function, Laplace-type integral, Gaussian measure, Banach space, differential operator of second order.
@article{MZM_2012_92_1_a8,
     author = {V. R. Fatalov},
     title = {Integral {Functionals} for the {Exponential} of the {Wiener} {Process} and the {Brownian} {Bridge:} {Exact} {Asymptotics} and {Legendre} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {84--105},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions
JO  - Matematičeskie zametki
PY  - 2012
SP  - 84
EP  - 105
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/
LA  - ru
ID  - MZM_2012_92_1_a8
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions
%J Matematičeskie zametki
%D 2012
%P 84-105
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/
%G ru
%F MZM_2012_92_1_a8
V. R. Fatalov. Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 84-105. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/

[1] V. I. Piterbarg, V. R. Fatalov, “Metod Laplasa dlya veroyatnostnykh mer v banakhovykh prostranstvakh”, UMN, 50:6 (1995), 57–150 | MR | Zbl

[2] V. R. Fatalov, “Tochnye asimptotiki bolshikh uklonenii dlya gaussovskikh mer v gilbertovom prostranstve”, Izv. NAN Armenii. Matem., 27:5 (1992), 43–61 | MR | Zbl

[3] V. R. Fatalov, “Bolshie ukloneniya gaussovskikh mer v prostranstvakh $l^p$ i $L^p$, $p\ge2$”, TVP, 41:3 (1996), 682–689 | MR | Zbl

[4] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000

[5] M. Yor, “On some exponential functionals of Brownian motion”, Adv. Appl. Prob., 24:3 (1992), 509–531 | DOI | MR | Zbl

[6] P. Carr, M. Schröder, “Bessel processes, the integral of geometric Brownian motion, and Asian options”, TVP, 48:3 (2003), 503–533 | MR | Zbl

[7] V. R. Fatalov, “Tochnye asimptotiki raspredelenii integralnykh funktsionalov ot geometricheskogo brounovskogo dvizheniya i inye rodstvennye formuly”, Probl. peredachi inform., 43:3 (2007), 75–96 | MR | Zbl

[8] S. Albeverio, V. Fatalov, V. I. Piterbarg, “Asymptotic behavior of the sample mean of a function of the Wiener process and the Macdonald function”, J. Math. Sci. Univ. Tokyo, 16:1 (2009), 55–93 | MR | Zbl

[9] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR | Zbl

[10] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973 | MR | Zbl

[11] L. Robin, Fonctions sphériques de Legendre et fonctions sphéroïdales, Tome 1, Gauthier-Villars, Paris, 1957 ; Tome 2, Gauthier-Villars, Paris, 1958 ; Tome 3, Gauthier-Villars, Paris, 1959 | MR | Zbl | MR | Zbl | MR

[12] T. Khida, Brounovskoe dvizhenie, Nauka, M., 1987 | MR | Zbl

[13] Sh. Vatanabe, N. Ikeda, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR | Zbl

[14] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999 | MR | Zbl

[15] I. M. Kovalchik, “Integral Vinera”, UMN, 18:1 (1963), 97–134 | MR | Zbl

[16] B. Simon, Functional Integration and Quantum Physics, Pure Appl. Math., 86, Academic Press, New York, 1979 | MR | Zbl

[17] R. S. Ellis, J. S. Rosen, “Laplace's method for Gaussian integrals with an application to statistical mechanics”, Ann. Probab., 10:1 (1982), 47–66 ; Correction, 11:2 (1983), 456 | DOI | MR | Zbl | DOI

[18] R. S. Ellis, J. S. Rosen, “Asymptotic analysis of Gaussian integrals. I. Isolated minimum points”, Trans. Amer. Math. Soc., 273:2 (1982), 447–481 ; “Asymptotic analysis of Gaussian integrals. II. Manifold of minimum points”, Comm. Math. Phys., 82:2 (1981), 153–181 | DOI | MR | Zbl | DOI | MR | Zbl

[19] A. D. Venttsel, Predelnye teoremy o bolshikh ukloneniyakh dlya markovskikh sluchainykh protsessov, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1986 | MR | Zbl

[20] S. Kusuoka, Y. Tamura, “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38:3 (1991), 533–565 | MR | Zbl

[21] S. Liang, “Laplace approximations for large deviations of diffusion processes on Euclidean spaces”, J. Math. Soc. Japan, 57:2 (2005), 557–592 | DOI | MR | Zbl

[22] V. R. Fatalov, “Tochnye asimptotiki vinerovskikh integralov tipa Laplasa dlya $L^p$-funktsionalov”, Izv. RAN. Ser. matem., 74:1 (2010), 197–224 | MR | Zbl

[23] V. R. Fatalov, “Bolshie ukloneniya $L^p$-normy vinerovskogo protsessa so snosom”, Matem. zametki, 65:3 (1999), 429–436 | MR | Zbl

[24] V. R. Fatalov, “Asimptotiki bolshikh uklonenii vinerovskikh polei v $L^p$-norme, nelineinye uravneniya Khammershteina i giperbolicheskie kraevye zadachi vysokogo poryadka”, TVP, 47:4 (2002), 710–726 | MR | Zbl

[25] V. R. Fatalov, “Tochnye asimptotiki tipa Laplasa dlya umerennykh uklonenii raspredelenii summ nezavisimykh banakhovoznachnykh sluchainykh elementov”, TVP, 48:4 (2003), 720–744 | MR | Zbl

[26] V. R. Fatalov, “Tochnye asimptotiki bolshikh uklonenii statsionarnykh protsessov Ornshteina–Ulenbeka dlya $L^p$-funktsionalov, $p>0$”, Probl. peredachi inform., 42:1 (2006), 52–71 | MR | Zbl

[27] V. R. Fatalov, “Metod Laplasa dlya gaussovskikh mer v banakhovom prostranstve (mnogoobrazie tochek minimuma) s primeneniem k statistike Vatsona”, TVP (to appear)

[28] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, T. 1, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1971 | MR | Zbl

[29] Kh.-S. Go, Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979 | MR | Zbl

[30] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[31] M. A. Lifshits, Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995 | Zbl

[32] V. I. Bogachev, Gaussovskie mery, Nauka, M., 1997 | MR | Zbl

[33] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR

[34] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | MR | Zbl

[35] R. Bonic, J. Frampton, “Smooth functions on Banach manifolds”, J. Math. Mech., 15:5 (1966), 877–898 | MR | Zbl

[36] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[37] Funktsionalnyi analiz, ed. S. G. Krein, Nauka, M., 1972 | MR | Zbl

[38] A. Pich, Operatornye idealy, Mir, M., 1982 | MR | Zbl

[39] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[40] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[41] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[42] V. A. Sadovnichii, Teoriya operatorov, Izd-vo Mosk. un-ta, M., 1979 | MR | Zbl

[43] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1961 | MR | Zbl

[44] A. G. Kostyuchenko, I. S. Sargsyan, Raspredelenie sobstvennykh znachenii. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1979 | MR | Zbl

[45] L. Kollatts, Zadachi na sobstvennye znacheniya s tekhnicheskimi prilozheniyami, Nauka, M., 1968 | MR | Zbl

[46] F. Olver, Asimptotiki i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[47] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2003

[48] J.-D. Deuschel, D. Stroock, Large Deviations, Pure Appl. Math., 137, Academic Press, Boston, MA, 1989 | MR | Zbl

[49] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Appl. Math. (N. Y.), 38, Springer-Verlag, Berlin, 1998 | MR | Zbl