Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 84-105

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove results concerning the exact asymptotics of the probabilities $$ \mathsf{P}\biggl\{\int_0^1 e^{\varepsilon\xi(t)}\,dt\biggl\},\qquad \mathsf{P}\biggl\{\int_0^1 e^{\varepsilon|\xi(t)|}\,dt\biggl\} $$ as $\varepsilon \to 0$ and $0$ for two Gaussian processes $\xi(t)$, the Wiener process and the Brownian bridge. We also obtain asymptotic formulas for integrals of Laplace type. Our study is based on the Laplace method for Gaussian measures in Banach spaces. The calculations of the constants are reduced to the solution of an extremal problem for the action functional and to the study of the spectrum of a second-order differential operator of Sturm–Liouville type using the Legendre functions.
Keywords: Wiener process, Brownian bridge, Legendre function, Laplace-type integral, Gaussian measure, Banach space, differential operator of second order.
@article{MZM_2012_92_1_a8,
     author = {V. R. Fatalov},
     title = {Integral {Functionals} for the {Exponential} of the {Wiener} {Process} and the {Brownian} {Bridge:} {Exact} {Asymptotics} and {Legendre} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {84--105},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions
JO  - Matematičeskie zametki
PY  - 2012
SP  - 84
EP  - 105
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/
LA  - ru
ID  - MZM_2012_92_1_a8
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions
%J Matematičeskie zametki
%D 2012
%P 84-105
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/
%G ru
%F MZM_2012_92_1_a8
V. R. Fatalov. Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 84-105. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a8/