How Best to Recover a Function from Its Inaccurately Given Spectrum?
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 59-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the problem of optimal recovery of a function and its derivatives on the line from the Fourier transform of the function known approximately on a set of finite measure. We find an optimal recovery method and an optimal set on which we must measure the Fourier transform with given error.
Keywords: optimal recovery of a function, Sobolev class of functions, Lagrange function.
Mots-clés : Fourier transform
@article{MZM_2012_92_1_a5,
     author = {G. G. Magaril-Il'yaev and K. Yu. Osipenko},
     title = {How {Best} to {Recover} a {Function} from {Its} {Inaccurately} {Given} {Spectrum?}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {59--67},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a5/}
}
TY  - JOUR
AU  - G. G. Magaril-Il'yaev
AU  - K. Yu. Osipenko
TI  - How Best to Recover a Function from Its Inaccurately Given Spectrum?
JO  - Matematičeskie zametki
PY  - 2012
SP  - 59
EP  - 67
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a5/
LA  - ru
ID  - MZM_2012_92_1_a5
ER  - 
%0 Journal Article
%A G. G. Magaril-Il'yaev
%A K. Yu. Osipenko
%T How Best to Recover a Function from Its Inaccurately Given Spectrum?
%J Matematičeskie zametki
%D 2012
%P 59-67
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a5/
%G ru
%F MZM_2012_92_1_a5
G. G. Magaril-Il'yaev; K. Yu. Osipenko. How Best to Recover a Function from Its Inaccurately Given Spectrum?. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 59-67. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a5/

[1] A. Kolmogoroff, “Über die beste Annäherung von Functionen einer gegebenen Functionenklasse”, Ann. of Math. (2), 37:1 (1936), 107–110 | DOI | MR | Zbl

[2] S. A. Smolyak, Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1965

[3] C. A. Micchelli, T. J. Rivlin, “A survey of optimal recovery”, Optimal Estimation in Approximation Theory, Plenum Press, New York, 1977, 1–54 | MR | Zbl

[4] J. F. Traub, H. Woźniakowski, A General Theory of Optimal Algorithms, ACM Monogr. Ser., Academic Press, New York, 1980 | MR | Zbl

[5] C. A. Micchelli, T. J. Rivlin, “Lectures on optimal recovery”, Numerical analysis, Lancaster 1984, Lecture Notes in Math., 1129, Springer-Verlag, Berlin, 1985, 21–93 | DOI | MR | Zbl

[6] V. V. Arestov, “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, Sbornik trudov Vsesoyuznoi shkoly po teorii funktsii, Tr. MIAN SSSR, 189, Nauka, M., 1989, 3–20 | MR

[7] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Matem. zametki, 50:6 (1991), 85–93 | MR | Zbl

[8] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po priblizhennoi informatsii o spektre i neravenstva dlya proizvodnykh”, Funkts. analiz i ego pril., 37:3 (2003), 51–64 | MR | Zbl

[9] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “O nailuchshem vybore informatsii v zadache vosstanovleniya funktsii po spektru”, Matematicheskii forum. T. 1. Issledovaniya po matematicheskomu analizu, VNTs RAN, Vladikavkaz, 2008, 142–150