Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_1_a2, author = {Ya. V. Vegner and S. B. Gashkov}, title = {Complexity of {Approximate} {Realizations} of {Lipschitz} {Functions} by {Schemes} in {Continuous} {Bases}}, journal = {Matemati\v{c}eskie zametki}, pages = {27--43}, publisher = {mathdoc}, volume = {92}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a2/} }
TY - JOUR AU - Ya. V. Vegner AU - S. B. Gashkov TI - Complexity of Approximate Realizations of Lipschitz Functions by Schemes in Continuous Bases JO - Matematičeskie zametki PY - 2012 SP - 27 EP - 43 VL - 92 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a2/ LA - ru ID - MZM_2012_92_1_a2 ER -
Ya. V. Vegner; S. B. Gashkov. Complexity of Approximate Realizations of Lipschitz Functions by Schemes in Continuous Bases. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a2/
[1] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii nepreryvnykh funktsii skhemami i formulami v polinomialnykh i nekotorykh drugikh bazisa”, Matematicheskie voprosy kibernetiki, 5, Nauka, M., 1994, 144–207 | MR | Zbl
[2] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii funktsionalnykh kompaktov v nekotorykh prostranstvakh i o suschestvovanii funktsii s zadannoi po poryadku slozhnostyu”, Fundament. i prikl. matem., 2:3 (1996), 675–774 | MR | Zbl
[3] O. B. Lupanov, Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo Mosk. un-ta, M., 1984
[4] A. N. Kolmogorov, V. M. Tikhomirov, “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR | Zbl
[5] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii analiticheskikh funktsii skhemami i formulami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 4, 36–43 | MR | Zbl
[6] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii nekotorykh klassov differentsiruemykh funktsii odnoi peremennoi skhemami iz funktsionalnykh elementov”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 3, 35–41 | MR | Zbl
[7] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii nekotorykh klassov differentsiruemykh funktsii odnoi peremennoi formulami v nepreryvnykh bazisakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 6, 53–58 | MR | Zbl
[8] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii nekotorykh klassov differentsiruemykh funktsii mnogikh peremennykh pri pomoschi skhem i formul v nekotorykh bazisakh, sostoyaschikh iz nepreryvnykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 3, 48–57 | MR | Zbl
[9] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii nepreryvnykh funktsii i o kontinualnykh analogakh effekta Shennona”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 6, 25–33 | MR | Zbl
[10] S. B. Gashkov, “On the complexity of approximate realization of continuous functions by schemes and formulas in continuous bases”, Fundamentals of Computation Theory, Lecture Notes in Comput. Sci., 278, Springer-verlag, 140–144 | DOI | Zbl
[11] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, skhemami v nepreryvnykh bazisakh”, Matem. zametki, 43:4 (1988), 543–557 | MR | Zbl
[12] S. B. Gashkov, “Slozhnost realizatsii bulevykh funktsii skhemami iz funktsionalnykh elementov i formulami v bazisakh, elementy kotorykh realizuyut nepreryvnye funktsii”, Problemy kibernetiki, 37 (1980), 57–118 | MR | Zbl
[13] I. G. Petrovskii, Izbrannye trudy. Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaya geometriya, Nauka, M., 1986 | MR | Zbl
[14] A. G. Vitushkin, Otsenka slozhnosti zadachi tabulirovaniya, Sovremennye problemy matematiki, Fizmatgiz, M., 1959 | MR | Zbl
[15] M. Ben-Or, “Lower bounds for algebraic computation trees”, Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, ACM, New York, 1983, 80–86 | DOI
[16] J. Milnor, “On the Betti numbers of real varieties”, Proc. Amer. Math. Soc., 15, 1964, 275–280 | MR | Zbl
[17] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii nekotorykh klassicheskikh funktsii”, Diskretnyi analiz, Tr. in-ta matem. SO RAN, 127, In-t matem. SO RAN, Novosibirsk, 1994, 14–33 | MR | Zbl
[18] A. N. Kolmogorov, “Razlichnye podkhody k otsenke trudnosti priblizhennogo zadaniya i vychisleniya funktsii”, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 351–356 | MR | Zbl
[19] E. A. Asarin, “O slozhnosti ravnomernykh priblizhenii nepreryvnykh funktsii”, UMN, 39:3 (1984), 157–169 | MR | Zbl
[20] S. B. Gashkov, Ya. V. Vegner, “O slozhnosti priblizhennoi realizatsii lipshitsevykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2008, no. 4, 49–51
[21] G. Turán, F. Vatan, “On the computation of Boolean functions by analog circuits of bounded fan-in”, J. Comput. System Sci., 54:1 (1997), 199–212 | DOI | MR | Zbl