Complexity of Approximate Realizations of Lipschitz Functions by Schemes in Continuous Bases
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 27-43
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that any function satisfying the Lipschitz condition on a given closed interval can be approximately computed by a scheme (nonbranching program) in the basis composed of functions
$$
x-y,\quad |x|,\quad x*y=\min(\max(x,0),1)\min(\max(y,0),1),
$$
and all constants from the closed interval $[0,1]$; here the complexity of the scheme is $O(1/\sqrt{\varepsilon})$, where $\varepsilon$ is the accuracy of the approximation. This estimate of complexity, is in
general, order-sharp.
Keywords:
Lipschitz function, (Lipshitz) continuous basis, Lipschitz condition, complexity of the approximate realization of functions, polynomial basis.
@article{MZM_2012_92_1_a2,
author = {Ya. V. Vegner and S. B. Gashkov},
title = {Complexity of {Approximate} {Realizations} of {Lipschitz} {Functions} by {Schemes} in {Continuous} {Bases}},
journal = {Matemati\v{c}eskie zametki},
pages = {27--43},
publisher = {mathdoc},
volume = {92},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a2/}
}
TY - JOUR AU - Ya. V. Vegner AU - S. B. Gashkov TI - Complexity of Approximate Realizations of Lipschitz Functions by Schemes in Continuous Bases JO - Matematičeskie zametki PY - 2012 SP - 27 EP - 43 VL - 92 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a2/ LA - ru ID - MZM_2012_92_1_a2 ER -
Ya. V. Vegner; S. B. Gashkov. Complexity of Approximate Realizations of Lipschitz Functions by Schemes in Continuous Bases. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a2/