Spectral Properties of Evolutionary Operators in Branching Random Walk Models
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 123-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a model of continuous-time branching random walk on a finite-dimensional integer lattice with finitely many branching sources of three types and study the spectral properties of the operator describing the evolution of the average numbers of particles both at an arbitrary source and on the entire lattice. For the leading positive eigenvalue of the operator, we obtain existence conditions determining exponential growth in the number of particles in this model.
Keywords: branching random walk, equations in Banach spaces, pseudodifference operator, symmetrizable operator, positive eigenvalue.
@article{MZM_2012_92_1_a11,
     author = {E. B. Yarovaya},
     title = {Spectral {Properties} of {Evolutionary} {Operators} in {Branching} {Random} {Walk} {Models}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {123--140},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a11/}
}
TY  - JOUR
AU  - E. B. Yarovaya
TI  - Spectral Properties of Evolutionary Operators in Branching Random Walk Models
JO  - Matematičeskie zametki
PY  - 2012
SP  - 123
EP  - 140
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a11/
LA  - ru
ID  - MZM_2012_92_1_a11
ER  - 
%0 Journal Article
%A E. B. Yarovaya
%T Spectral Properties of Evolutionary Operators in Branching Random Walk Models
%J Matematičeskie zametki
%D 2012
%P 123-140
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a11/
%G ru
%F MZM_2012_92_1_a11
E. B. Yarovaya. Spectral Properties of Evolutionary Operators in Branching Random Walk Models. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 123-140. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a11/

[1] S. Albeverio, L. V. Bogachev, E. B. Yarovaya, “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris Sér. I Math., 326:8 (1998), 975–980 | MR | Zbl

[2] S. Albeverio, L. Bogachev, “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4:1 (2000), 41–100 | DOI | MR | Zbl

[3] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekh.-mat. fak-te MGU, M., 2007

[4] E. B. Yarovaya, “Kriterii eksponentsialnogo rosta chisla chastits v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, TVP, 55:4 (2010), 705–731 | MR

[5] V. A. Vatutin, V. A. Topchii, E. B. Yarovaya, “Catalytic branching random walks and queueing systems with a random number of independently operating servers”, Teor. Ĭmovīr. Mat. Stat., 69 (2003), 1–15 | MR | Zbl

[6] B. A. Vatutin, B. A. Topchii, “Predelnaya teorema dlya kriticheskikh kataliticheskikh vetvyaschikhsya sluchainykh bluzhdanii”, TVP, 49:3 (2004), 461–484 | MR | Zbl

[7] E. B. Yarovaya, “Ob issledovanii vetvyaschikhsya sluchainykh bluzhdanii po mnogomernym reshetkam”, Sovremennye problemy matematiki i mekhaniki, Teoriya veroyatnostei i matematicheskaya statistika, 4, Izd-vo Mosk. un-ta, M., 2009, 119–136

[8] L. V. Bogachev, E. B. Yarovaya, “Predelnaya teorema dlya nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na $\mathbb Z^d$ s odnim istochnikom”, UMN, 53:5 (1998), 229–230 | MR | Zbl

[9] A. G. Golitsyna, S. A. Molchanov, “Mnogomernaya model redkikh sluchainykh rasseivatelei”, Dokl. AN SSSR, 294:6 (1987), 1302–1306 | MR | Zbl

[10] M. Rid, B. Saimon, Metody sovremennoi maticheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | Zbl

[11] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl

[12] A. P. Robertson, B. Dzh. Robertson, Topologicheskie vektornye prostranstva, Biblioteka sbornika “Matematika”, Mir, M., 1967 | MR | Zbl

[13] M. A. Shubin, “Psevdoraznostnye operatory i ikh funktsiya Grina”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 652–671 | MR | Zbl

[14] I. Schur, “Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen”, J. Reine Angew. Math., 140:1 (1911), 1–28 | Zbl

[15] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR

[16] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[17] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[18] Mery nekompaktnosti i uplotnyayuschie operatory, eds. R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Nauka, Novosibirsk, 1986 | MR | Zbl