Spectral Properties of Evolutionary Operators in Branching Random Walk Models
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 123-140
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a model of continuous-time branching random walk on a finite-dimensional integer lattice with finitely many branching sources of three types and study the spectral properties of the operator describing the evolution of the average numbers of particles both at an arbitrary source and on the entire lattice. For the leading positive eigenvalue of the operator, we obtain existence conditions determining exponential growth in the number of particles in this model.
Keywords:
branching random walk, equations in Banach spaces, pseudodifference operator, symmetrizable operator, positive eigenvalue.
@article{MZM_2012_92_1_a11,
author = {E. B. Yarovaya},
title = {Spectral {Properties} of {Evolutionary} {Operators} in {Branching} {Random} {Walk} {Models}},
journal = {Matemati\v{c}eskie zametki},
pages = {123--140},
publisher = {mathdoc},
volume = {92},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a11/}
}
E. B. Yarovaya. Spectral Properties of Evolutionary Operators in Branching Random Walk Models. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 123-140. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a11/