Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_1_a11, author = {E. B. Yarovaya}, title = {Spectral {Properties} of {Evolutionary} {Operators} in {Branching} {Random} {Walk} {Models}}, journal = {Matemati\v{c}eskie zametki}, pages = {123--140}, publisher = {mathdoc}, volume = {92}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a11/} }
E. B. Yarovaya. Spectral Properties of Evolutionary Operators in Branching Random Walk Models. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 123-140. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a11/
[1] S. Albeverio, L. V. Bogachev, E. B. Yarovaya, “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris Sér. I Math., 326:8 (1998), 975–980 | MR | Zbl
[2] S. Albeverio, L. Bogachev, “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4:1 (2000), 41–100 | DOI | MR | Zbl
[3] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekh.-mat. fak-te MGU, M., 2007
[4] E. B. Yarovaya, “Kriterii eksponentsialnogo rosta chisla chastits v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, TVP, 55:4 (2010), 705–731 | MR
[5] V. A. Vatutin, V. A. Topchii, E. B. Yarovaya, “Catalytic branching random walks and queueing systems with a random number of independently operating servers”, Teor. Ĭmovīr. Mat. Stat., 69 (2003), 1–15 | MR | Zbl
[6] B. A. Vatutin, B. A. Topchii, “Predelnaya teorema dlya kriticheskikh kataliticheskikh vetvyaschikhsya sluchainykh bluzhdanii”, TVP, 49:3 (2004), 461–484 | MR | Zbl
[7] E. B. Yarovaya, “Ob issledovanii vetvyaschikhsya sluchainykh bluzhdanii po mnogomernym reshetkam”, Sovremennye problemy matematiki i mekhaniki, Teoriya veroyatnostei i matematicheskaya statistika, 4, Izd-vo Mosk. un-ta, M., 2009, 119–136
[8] L. V. Bogachev, E. B. Yarovaya, “Predelnaya teorema dlya nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na $\mathbb Z^d$ s odnim istochnikom”, UMN, 53:5 (1998), 229–230 | MR | Zbl
[9] A. G. Golitsyna, S. A. Molchanov, “Mnogomernaya model redkikh sluchainykh rasseivatelei”, Dokl. AN SSSR, 294:6 (1987), 1302–1306 | MR | Zbl
[10] M. Rid, B. Saimon, Metody sovremennoi maticheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | Zbl
[11] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1970 | MR | Zbl
[12] A. P. Robertson, B. Dzh. Robertson, Topologicheskie vektornye prostranstva, Biblioteka sbornika “Matematika”, Mir, M., 1967 | MR | Zbl
[13] M. A. Shubin, “Psevdoraznostnye operatory i ikh funktsiya Grina”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 652–671 | MR | Zbl
[14] I. Schur, “Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen”, J. Reine Angew. Math., 140:1 (1911), 1–28 | Zbl
[15] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR
[16] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl
[17] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[18] Mery nekompaktnosti i uplotnyayuschie operatory, eds. R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Nauka, Novosibirsk, 1986 | MR | Zbl